Standard Bioinformatics Analysis for Bacterial Whole Genome and Eukaryotic RNA Sequencing

Bacteria Whole Genome Sequencing (HiSeq 150 PE)

Standard Bioinformatics Analysis - Bacterial Whole Genome Sequencing

Reference Mapping / de novo Assembly

Gene Component Analysis: Gene Annotation/ Gene Structure Prediction Repeat Sequences Non-coding RNAs

Gene Function Annotation:

NR GO COG

KEGG

Eukaryotic RNA-seq (HiSeq 150 PE)

Standard Bioinformatics Analysis - Eukaryotic RNA Sequencing with Reference Genome

Reference Mapping

Gene Expression Quantification

Correlation Analysis (For biological replicates only)

Differential Expression Analysis (For two or more groups of samples)

GO Enrichment Analysis of Differentially Expressed Genes (DEGs) (For two or more groups of samples)

KEGG Pathway Enrichment Analysis of Differentially Expressed Genes (DEGs) (For two or more groups of samples)

Standard Bioinformatics Analysis - Eukaryotic RNA Sequencing without Reference Genome

de novo Assembly

Gene Functional Prediction using 7 Databases – NR, NT, KOG, KO, Swiss-Prot, GO and PFAM

GO, COG, KEGG Classification

CDS Prediction

Gene Expression Analysis

Correlation Analysis (For biological replicates only)

Differential Expression Analysis (For two or more groups of samples)

GO Enrichment Analysis of Differentially Expressed Genes (DEGs) (For two or more groups of samples)

KEGG Pathway Enrichment Analysis of Differentially Expressed Genes (DEGs) (For two or more groups of samples)

More NGS services are available, please contact our local distributor for your NGS enquiries.

First BASE Laboratories Sdn Bhd No 7-1 to 7-3, Jalan SP 2/7, Taman Serdang Perdana, Seksyen 2, 43300 Seri Kembangan, Selangor, Malaysia Tel : +603 8943 3252 Email: peptide@base-asia.com Fax: +603 8943 3243 Web : www.base-asia.com For ordering and enquiries, please contact local distributor:

Next-Generation Sequencing

Product Highlights: Next Generation Sequencing for Amplicon, Bacterial Whole Genome and Eukaryote transcriptome

Amplicon Sequencing

16S/ 18S/ ITS metagenomics amplicon sequencing with free standard bioinformatics analysis, which are OTU clustering & filtering, species annotation, Alpha & Beta Diversity at 3 choices:

(i) 30,000 raw tags (~ 60,000 reads)
(ii) 50,000 raw tags (~ 100,000 reads)
(iii) 100,000 raw tags (~ 200,000 reads)

Various choice of Primers:

	Types	Region	Fragment Length	Primer
	Bacterial16S	٧A	292 hn	515F
		V-T	202.00	806R
		*V3-V4	466 bp	341F
			400 00	806R
		V4-V5	303 hn	515F
			992 hh	907R
	Archaeal16S	*V4	000 h -	U519F
			200 nh	806R
	Fungal18S	V4	170 hp	528F
			179 bp	706R
		VQ	131 hn	1380F
		VJ	131.00	1510R
	Fungal ITS	ITC 1	207 bp	ITS5-1737F
		1151	307 bp	ITS5-1737F
		*IT\$2	386 bp	ITS3
		1132	300 bh	ITS4

*Popular choices

Examples of charts in 16s metagenomics report

Why Hiseq 250 PE analysis is better than MiSeq in amplicon sequencing?

1) Higher quality of Q30 in HiSeq vs MiSeq

Actual sequencing quality by HiSeq 250 PE run:

Sample Name	Raw PE(#)	Combined(#)	Qualified(#)	Nochime(#)	Base(nt)	AvgLen(nt)	Q20	Q30	GC%	Effective%
Sample 1	128,890	123,477	113,269	99,409	42,595,983	428	98.75	97.41	52.54	77.13
Sample 2	122,870	117,054	107,045	88,166	37,670,275	427	98.74	97.43	53.23	71.76
Sample 3	125,694	118,185	106,892	72,944	31,134,638	427	98.64	97.24	53.31	58.03
Sample 4	122,638	117,109	106,980	98,734	42,109,339	426	98.65	97.21	53.35	80.51
Sample 5	122,202	116,784	106,616	92,986	39,725,135	427	98.63	97.16	53.4	76.09
Sample 6	127,001	120,838	109,699	92,529	39,627,392	428	98.64	97.14	54.09	72.86
Sample 7	120,609	115,370	107,529	98,473	40,584,142	412	98.74	97.4	54.4	81.65
Sample 8	125,129	118,791	108,041	96,099	41,188,943	429	98.75	97.41	52.71	76.8
Sample 9	126,076	119,714	108,762	95,033	40,720,930	428	98.77	97.43	53.16	75.38
Sample 10	130,996	124,552	113,130	101,222	43,351,395	428	98.76	97.41	52.51	77.27

Actual sequencing quality by MiSeq 300 PE run:

Table 1. Raw data Stats							
Sample ID	Total read bases (bp)	Total reads	CC(%)	AT(%)	Q20(%)	Q30(%)	
1	256,529,762	858,212	58.233	41.77	75.286	60.508	
2	236,175,031	786,836	5 8.3 98	41.6	75.25 9	60.508	
3	231,879,252	772,820	58.410	41.59	75.262	60.546	
4	263,438,836	879,626	58.954	41.05	75.406	60.611	
5	250,572,014	837,304	59.149	40.85	75.891	61.186	
6	278,201,129	929,298	5 9.4 50	40.55	75.110	60.201	
7	321,024,326	1,074,090	57.810	42.19	75.249	60.536	
8	272,400,636	910,644	58.150	41.85	74.950	60.049	
9	260,691,692	869,800	58.619	41.38	7 4 .840	59.910	
10	289,893,547	967,216	57.476	42.52	75.123	60.295	
11	265,199,289	883,502	57.196	42.8	75.552	60.874	
12	241,720,364	805,268	57.339	42.66	75.345	60.633	

2) Higher alignment efficiency from hypervariable regions

an en	RawR1 Q20%	RawR1 Q30%	RawR2 Q20%	RawR2 Q30%	Alignment Efficiency in %
HiSeq 250 PE	88.27	83.22	88.13	83.25	73.12
MiSeq 300 PE	88.48	78.96	89.42	80.37	49.39

3) Higher throughout and thus lower cost to run in HiSeq

Note: The request of BI advanced analysis, which are multi-variant statistical and environmental factor is available at separate charges.