Product Information # Taq DNA Polymerase (recombinant) - MgCl₂ separate, 2500U C/No. BIO-5110-2500U Concentration Packaging 5 X 500U 10X Taq buffer 25mM MgCl₂ Storage -20°C Avoid frequent thawing and freezing. Axil Scientific Pte Ltd 41 Science Park Road #01-22/23 The Gemini Singapore Science Park II Singapore 117610 Page 1 of 5 # **Description** Taq DNA Polymerase is a thermostable DNA polymerase that catalyzes 5' \rightarrow 3' synthesis of DNA, has zero detectable 3' \rightarrow 5' exonuclease (proofreading) activity and possesses minimal 5' \rightarrow 3' exonuclease activity. In addition, Taq DNA Polymerase exhibits deoxynucleotidyl transferase activity, which frequently results in the addition of extra adenines at the 3'-end of PCR products. Recombinant Taq DNA Polymerase is ideal for standard PCR of templates 5kb or shorter. #### Source An *E.coli* strain that carries a cloned *pol* gene from *Thermus aquaticus*. #### **Unit Definition** One unit of the enzyme catalyzes the incorporation of 10nmol of deoxyribonucleotides into a polynucleotide fraction in 30min at 74°C . Page 2 of 5 # **Applications** - DNA sequencing DNA labeling PCR for cloning - PCR amplification of DNA fragments up to 5kb # **Buffer Composition** #### Storage buffer 20mM Tris-HCI 0.1mM EDTA 0.5% (v/v) Nonidet P40 1mM DTT 0.5% (v/v) Tween 20 100mM KCI 50% (v/v) Glycerol #### 10X Taq buffer without MgCl2 750mM Tris-HCI (pH 8.8 at 25°C) 200mM KCI 50mM (NH₄)₂SO₄ 0.5% (v/v) Nonidet P40 # Remarks - Half-life of this enzyme is >40mins @ 95°C. - Taq DNA Polymerase accepts modified nucleotides (e.g. biotin-, digoxigenin-, fluorescent-labeled nucleotides) as substrates for the DNA synthesis. ### **Quality Control** #### Nuclease Assay No detectable contaminating endonuclease or exonuclease activity. #### Functional Assay $\it Taq$ DNA Polymerase was tested for amplification of 1500bp of single copy gene from $\it E.~coli$ strain. Page 3 of 5 Page 4 of 5 #### **Protocol** The following protocol serves as a starting point and general guideline for any Polymerase Chain Reaction (PCR). Reaction conditions (incubation times and temperatures, concentration of *Taq* DNA polymerase, primers, MgCl₂, and template DNA) vary and need to be optimized. PCR reactions should be prepared in a DNA-free environment, dedicated pipette and aerosol resistant tips are recommended. Always keep the control and template DNA to be amplified isolated from other components. Recommendations of Template DNA in a 50 µl reaction volume | DNA Type | Amount of DNA | | |--------------------|---------------|--| | Human genomic DNA | 0.1 to 1 μg | | | Plasmid DNA | 0.5 to 5 ng | | | Phage DNA | 0.1 to 10 ng | | | E.coli genomic DNA | 10 to 100 ng | | - Thaw Taq DNA polymerase, 10X Taq buffer and 25mM MgCl₂ at room temperature. Keep the tubes on ice after thawing. Vortex briefly and spin down contents quickly. - 2. Prepare the following reaction mix in a sterile, nuclease-free PCR tube on ice. | For a 50µl reaction volume: | | | | | |----------------------------------|--------------|-------------|--|--| | Components | Volume (µI) | Final Conc. | | | | Taq DNA polymerase (recombinant) | 0.2 - 0.5 | 1 – 2.5U | | | | Forward Primer (10µM) | 0.5 – 5 | 0.1 – 1µM | | | | Reverse Primer (10µM) | 0.5 – 5 | 0.1 – 1µM | | | | 10X Taq Buffer | 5 | 1X | | | | dNTP Mix (10mM of each) | 1 | 0.2mM | | | | 25mM MgCl₂ | 2-6 | 1 – 3mM | | | | DNA template | 1 – 5 | See above | | | | Nuclease-Free water | Top up to 50 | N.A | | | - 3. Cap tubes and spin down contents briefly. - 4. Place reactions in thermal cycler and incubate at 95°C to completely denature template DNA. Perform about 25 35 cycles of PCR amplification (repeat steps 2 to 4 for 25 35 cycles). Low amounts of starting template may require 40 cycles. PCR Amplification as follows: | No. | Step | Temperature | Time | |-----|----------------------|-------------|---------------| | 1 | Initial Denaturation | 95°C | 1 – 5 min | | 2 | Denaturation | 95°C | 0.5 – 1 min | | 3 | Annealing | 42 - 65°C | 0.5 – 1 min | | 4 | Extension | 72 - 75°C | 1 min/kb | | 5 | Final Extension | 72 - 75°C | 5 – 15 min | | 6 | Soak | *4°C | Several hours | *If thermal cycler has a refrigeration or "soak" cycle, cycling reaction can be programmed to end by holding the tubes at 4°C for several hours. #### General guidelines for PCR amplifications # Initial denaturation To ensure efficient utilization of the template during first amplification cycle, it is essential that the template is denatured completely. If GC content of the template is \leq 50%, an initial 1-5 min denaturation at $95 ^{\circ}\text{C}$ would be sufficient. #### Denaturation DNA denaturation time of 0.5min/cycle at 95°C is usually sufficient. For GC-rich templates, denaturation could be prolonged to 3 – 4min. #### **Annealing** Annealing temperature should be 5°C lower than melting temperature ($T_{\rm m}$ - 5°C) of primers. 0.5min/cycle is usually sufficient. If non-specific PCR products are observed, the temperature should be optimized stepwise in 1-2°C increments. #### <u>Extension</u> Optimal temperature for extension of *Taq* DNA Polymerase is between 70-75°C. Recommended extension step is 1min/kb at 72°C for PCR products. #### Number of cycles If less than 10 copies of template are present, about 40 cycles are required. For higher amount, 25-35 cycles are sufficient. #### Final extension After the last cycle, incubate PCR mixture at 72° C for an additional 5-15min to allow any possible incomplete amplification to take place.