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1. Library Preparation and Sequencing

From the RNA sample to the final data, each step, including sample test, library 
preparation, and sequencing, influences the quality of the data, and data quality 
directly impacts the analysis results. To guarantee the reliability of the data, quality 
control (QC) is performed at each step of the procedure. The workflow is as follows: 

1.1 Total RNA Sample QC 

All samples need to pass through the following four steps before library construction: 

(1) Agarose Gel Electrophoresis: tests RNA degradation and potential contamination

(2) Nanodrop: tests RNA purity (OD260/OD280)

(3) Qubit: quantifies the RNA (determines concentration)

(4) Agilent 2100: checks RNA integrity
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1.2 Library Construction and Quality Assessement 

After total RNA sample QC, Ribo-zero kits were used to remove rRNAs, then 
fragmentation buffer were added to fragment the mRNAs. Using random hexamers as 
primers, the mRNA fragments were reverse-transcribe to single stranded cDNAs. 
Atfer the systhesis of single stranded cDNAs, buffer, dNTPs (in which dTTP were 
replaced by dUTP), DNA polymerase I and RNase H were applied to systhesis the 
complementary cDNA strands. The double stranded cDNAs were purified using 
AMPure XP beads. The double stranded cDNAs were end-repaired, polyadenylated, 
ligated with adapter sequences and size-selected using AMPure XP beads. Then the 
uracil containing strands were degraded by USER Enzyme, and the remained strands 
were amplified using PCR and purified using AMPure XP beads. The workflow chart 
is as follows: 

1.3 Library QC 

Library concentration was first quantified using a Qubit 2.0 fluorometer (Life 
Technologies), and then diluted to 1 ng/µl before checking insert size on an Agilent 
2100 and quantifying to greater accuracy by quantitative PCR (Q-PCR) (library 
activity >2 nM). 
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1.4 Sequencing 

Libraries are fed into HiSeq machines according to activity and expected data volume. 

2. Analysis Workflow

The analysis workflow for data with a reference genome is as follows: 

Note: PPI (Protein-protein interaction) network analysis is only available for species 
with known PPI network data. 
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3. Project Results

3.1 Raw Data 

The original raw data from Illumina HiSeqTM are transformed to Sequenced Reads by 
base calling. Raw data are recorded in a FASTQ file, which contains sequence 
information (reads) and corresponding sequencing quality information. 

@HWI-ST1276:71:C1162ACXX:1:1101:1208:2458 1:N:0:CGATGT 
NAAGAACACGTTCGGTCACCTCAGCACACTTGTGAATGTCATGGGATCCAT 
+ 
#55???BBBBB?BA@DEEFFCFFHHFFCFFHHHHHHHFAE0ECFFD/AEHH 

Line 1 begins with a '@' character and is followed by the Illumina Sequence Identifiers 
and an optional description. 

Line 2 is the raw sequence read. 

Line 3 begins with a '+' character and is optionally followed by the same sequence 
identifier and description. 

Line 4 encodes the quality values for the sequence in Line 2, and must contain the same 
number of characters as there are bases in the sequence (Cock et al.). 

Illumina Sequence Identifier details: 
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3.2 Data Quality Control 

3.2.1 Error Rate 

The error rate for each base were transformed by the Phred score as in equation 1 
(equation 1: Qphred = -10log10(e)). The relationship between Phred quality scores Q 
and base-calling error “e” is given below: 

Relationship between sequencing quality for a single base and Phred score given by the 
Illumina CASAVA v1.8 software:

Sequencing error rate and base quality are affected by the sequencing machine, 
reagent and the samples. The error rate distribution has two features：  
(1)Error rate increases as the sequencing reads are extended and sequencing reagents
are comsumed.
(2)The first six bases have relatively high error rates due to the random hexamers
used in priming cDNA synthesis (Jiang et al.).

Figure 3.2.1 Error Rate Distribution 
The x-axis shows the base position along each sequencing read and the y-axis shows the base error rate. 

3.2.2 GC Content Distribution 

AT and GC content distributions were evaluated to detect potential AT or GC 
separation, which may affect subsequent gene expression quantification. 
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Theoretically, G should equal to C, and A should equal to T throughout the whole 
sequencing process for non-stranded libraries, whereas AT/GC separation is normally 
observed in stranded libraries. For DGE (Digital Gene Expression) libraries, a large 
variation of sequencing error in the first 6-7 bases is allowed due to the usage of 
random primers in library construction. 

Figure 3.2.2 GC content distribution 
The x-axis shows each base position within a read, and the y-axis shows the percentage of each base, with each base represented 

by a different color. 

3.2.3 Data Filtering 

Raw reads are filtered to remove reads containing adapters or reads of low quality, so 
that downstream analyses are based on clean reads. The filtering process is as follows: 

(1) Discard reads with adaptor contamination.

(2) Discard reads when uncertain nucleotides constitute more than 10 percent of either
read (N > 10%).

(3) Discard reads when low quality nucleotides (base quality less than 20) constitute
more than 50 percent of the read.

RNA-seq Adapter sequences (Oligonucleotide sequences of adapters from TruSeqTM 
RNA and DNA Sample Prep Kits): 

NEBNext® UltraTM RNA Library Prep Kit 

RNA 5' Adapter (RA5): 
5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA
TCT-3' 
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RNA 3’ Adapter (RA3): 
5'-GATCGGAAGAGCACACGTCTGAACTCCAGTCAC(6-nucleotide 
index)ATCTCGTATGCCGTCTTCTGCTTG-3' 

Figure 3.2.3 Raw Data 
Results are shown as percentage of total raw reads. 

(1) Adapter related, reads that had adapter contamination. 

(2) Containing N, reads in which uncertain nucleotides constituted more than 10 percent of the read. 

(3) Low quality, reads in which low quality nucleotides constituted more than 50 percent of the read.

(4) Clean reads, reads that passed quality control 

3.2.4 Data Quality Control Summary 

Table 3.2.4 Data Production 

(1) Sample name: the names of samples

(2) Raw Reads: the original sequencing reads counts

(3) Clean Reads: number of reads after filtering

(4) Clean Bases: clean reads number multiply read length, saved in G unit 

(5) Error Rate: average sequencing error rate, which is calculated by Qphred=-10log10(e)

(6) Q20: percentages of bases whose correct base recognition rates are greater than 99% in total bases

(7) Q30: percentages of bases whose correct base recognition rates are greater than 99.9% in total bases 

(8) GC content: percentages of G and C in total bases
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3.3 Mapping to Reference Genome 

Algorithm for mapping sequences: appropriate software is chosen according to the
characteristics of the reference genome. In general, Bowtie2 is chosen for the 
genomes of bacteria and other species with a high gene density. The mismatch 
parameter is set to two, and other parameters are set to default. In general, the total 
mapped rate should be more than 70%, and the percentage of reads that can be 
mapped to multiple sites in the reference genome should be less than 10%, if there is 
no contamination and a correct reference genome is chosen. 

3.3.1 Overview of Mapping Status 

Table 3.3.1 Overview of Mapping Status

Details of Data Quality Control 

(1) Sample name: name of sample. '_1' and '_2' stands for reads starting from different ends, respetively. The total clean reads for

each sample are the sum of reads starting from both ends. (2) Raw reads: counts of raw reads. 

(3) Clean reads: counts of clean reads. 

(4) Clean bases: sum of nucleotides of all reads in clean data, in denomination of gigabyte.

(5) Error rate: calculated from Equation 1.

(6) Q20 and Q30: percentages of nucleotidess with Phred value larger than 20 and 30 in total nucleotides, respectively. 

(7) GC content: percentages of G and C in total nucleotides.

3.3.2 Mapped Regions in Reference Genome 

Mapped regions are classified base on the structural annotation of the reference genome. 
Exon-mapped reads should be abundant if the reference genome is well-annotated. 
Reads map to intergenic regions may due to weak annotation of the reference genome, 
noncoding RNA or background noise. 
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Figrue 3.3.2 Classification of Reads According to Mapped Region. 

3.3.3 Distribution of Mapped Reads in Chromosomes 

The distribution of mapped reads in chromosomes was estimated by statistics on the 
genomic locations of total mapped reads. A random selected sample of total mapped 
reads and their genomic location distribution is displayed in below figure: 

Figure 3.3.3 Distribution Plot of Mapped Reads in Chromosomes. 
The outermost circle represents the reference genome. The region with grey background shows the distribution of the random 

selected sample of reads, in which the reads mapped to positive and negetive chains are in red and blue, respectively. The innermost 

circle shows the positvie chain coverage distribution in orange and teh negative chain coverage distribution in green, respectively. 

Strange dots were discarded if from the mean of coverages more than 3 times the standard deviation. 
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3.3.4 Visualization of Mapping Status of Reads 

Files are provided in BAM format, a standard file format that contains mapping results, 
and the corresponding reference genome and gene annotation file for some species. The 
Integrative Genomics Viewer (IGV) is recommended for visualizing data from BAM 
files. The IGV has several features: (1) it displays the positions of single or multiple 
reads in the reference genome, as well as read distribution between annotated exons, 
introns or intergenic regions, both in adjustable scale; (2) displays the read abundance 
of different regions to demonstrate their expression levels, in adjustable scale; (3) 
provides annotation information for both genes and splicing isoforms; (4) provides 
other related annotation information; (5) displays annotations downloaded from remote 
servers and/or imported from local machines. 

3.4 Expression Quantification

3.4.1 Expression Quantification 

Gene expression level is measured by transcript abundance. The greater the abundance, 
the higher is the gene expression level. In our RNA-seq analysis, the gene expression 
level is estimated by counting the reads that map to genes or exons. Read count is not 
only proportional to the actual gene expression level, but is also proportional to the 
gene length and the sequencing depth. In order for the gene expression levels estimated 
from different genes and experiments to be comparable, the FPKM is used. In RNA-seq, 
FPKM, short for the expected number of Fragments Per Kilobase of transcript 
sequence per Millions base pairssequenced, is the most commonest method of 
estimating gene expression levels, which takes into account the effects of both 
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sequencing depth and gene length oncounting of fragments(Trapnell, Cole, et al., 
2010). 

HTSeq software was used to analyze the gene expression levels in this experiment, 
using the union mode. The result files present the number of genes with different 
expression levels and the expression level of single genes. In general, an FPKM value 
of 0.1 or 1 is set as the threshold for determining whether the gene is expressed or not. 

Table 3.4.1 The number of genes with different expression levels 

Table 3.4.2 Gene expression levels 

3.4.2 Distributions of gene expression levels 

An FPKM distribution diagram and violin plot were applied to compare gene 
expression levels of different group pf samples. For biological replicates, the mean 
FPKM values were used. 

Figure 3.4.2 Distributions of gene expression levels 
Upper panel: FPKM distribution，the x-axis shows the log10(FPKM+1) and the y-axis shows gene density. Lower panel: FPKM 

violin Plot, the x-axis shows the sample names and the y-axis shows the log10(FPKM+1). Each violin has five statistical 

magnitudes (max value, upper quartile, median, lower quartile and min value). Lower right panel：FPKM distribution，the x-axis 

shows the log10(FPKM+1) and the y-axis shows gene density. 
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3.5 RNA-seq Advanced QC 

3.5.1 Correlation of RNA-seq samples 

Biological replicates are necessary for any biological experiment, including those 
involving RNA-seq technology (Hansen et al.). In RNA-seq, replicates have a 
two-fold purpose. First, they demonstrate whether the experiment is repeatable, and 
secondly, they can reveal differences in gene expression between samples. The 
correlation between samples is an important indicator for testing the reliability of the 
experiment. The closer the correlation coefficient is to 1, the greater the similarity of 
the samples. ENCODE suggests that the square of the Pearson correlation coefficient 
should be larger than 0.92, under ideal experimental conditions. In this project, the R2 
should be larger that 0.8. 

Figure 3.5.1 Correlation of RNA-seq samples 
Heat maps of the correlation coefficient between samples are shown.(If the samples are more than 4 groups, then only present the 

scatter diagrams between biological replicates The scatter diagrams demonstrate the correlation coefficient between samples; R2, 

the square of the Pearson coefficient. 
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3.6 Differential Expression Analysis 

3.6.1 List of differentially expressed genes 

The input data for differential gene expression analysis are readcounts from the gene 
expression level analytsis. The differental gene expression analysis contains three 
steps: 

1)Readcounts Normalization;

2)Model dependent p-value estimation;

3)FDR value estimation based on multiple hypothesis testing.

Diferent softwares and paarameter sets are applied in differnt situations. The analysis 
methods are listed below: 

The readcount value of the ith gene in the jth sample is Kij, then 

Negative binomial distribution: Kij ～ NB(μij,σij
2)

Poisson distribution: Kij ～ P(μij) 

Table 3.6.1 List of differentially expressed genes 

Each column stands for: 

(1) Gene id: id of differentially expressed gene

(2) readcount_Sample1: normalized readcount of Sample1

(3) readcount_Sample2: normalized readcount of Sample2

(4) log2FoldChange: log2(Sample1/Sample2)

(5) pvalue(pval): p-value of statistical hypothesis testing

(6) qvalue(padj): adjusted p-value. The lower the qvalue is, the more significant the gene differentially expressed.
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3.6.2 Screening of differentially expressed genes 

Volcano plots are used to illustrate the overall distribution of differentially expressed 
genes. 

Figure 3.6.2 Volcano plot for differentially expressed genes 
The x-axis shows the fold change in gene expression between different samples, and the y-axis shows the statistical significance 

of the differences. Significantly up and down regulated genes are highlighted in red and green, respectively. Genes do not show 

significant differential expression are in blue. 

3.6.3 Cluster Analysis of Gene Expression Differences 

Cluster analysis is used to find genes with similar expression patterns under various 
experimental conditions. By clustering genes with similar expression patterns, it may 
be possible to discern unknown functions of previously characterized genes or the 
function of unknown genes. In hierarchical clustering, areas of different colors denote 
different groups (clusters) of genes, and genes within each cluster may have similar 
functions or take part in the same biological process. 

In addition to the FPKM cluster, the H-cluster, K-means and SOM are also used to 
cluster the log2(ratios). Genes within the same cluster exhibit the same trends in 
expression levels under different conditions. 
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Figure 3.6.3 Cluster analysis. 
Upper panel: the overall results of FPKM cluster analysis, clustered using the log10(FPKM+1) value. Red denotes genes with 

high expression levels, and blue denotes genes with low expression levels. The color range from red to blue represents the 

log10(FPKM+1) value from large to small. Lower panel： log2(ratios) line chart. Each grey line in a subline chart represents the 

relative expression value of a gene cluster under different experimental conditions, and the blue line represents the mean value. 

The x-axis shows the experimental condition and the y-axis shows the relative expression level. 

3.6.4 Venn diagram of differentially expressed genes 

The Venn diagram presents the counts of differential expressed genes of all compares 
and the counts of genes in the intersections of different compares. 

Figure 3.6.4 Venn diagram of differentially expressed genes 
The sum of numbers in each circle is the counts of differentially expressed genes of the certain compare, and the numbers in the 

intersetions are the counts of genes differentially expressed in all overlaped compares. 
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3.7 GO Enrichment Analysis 

Gene Ontology (GO, http://www.geneontology.org/)is a major bioinformatics 
initiative to unify the presentation of gene and gene product attributes across all 
species. DEGs refer to differentially expressed genes. 

GO enrichment analysis is used by GOseq (Young et al, 2010), which is based on 
Wallenius non-central hyper-geometric distribution. Its characteristics are: the 
probability of drawing an individual from a certain category is different from that of 
drawing it from outsides of the category, and this difference is obtained from 
estimating of the preference of gene length. 

3.7.1 GO Enrichment Result List of DEGs 

Table 3.7.1 Significantly Enriched GO Terms in DEGs 

Each column stands for: 

(1) GO accession: Gene Ontology entry

(2) Description: Detailed description of Gene Ontology. 

(3) Term_type: GO types, including cellular component, biological process, and molecular function. 

(4) Over_represented_pValue: p-value in hypergenometric test.

(5) Corrected_pValue: Corrected P-value; GO with corrected p-values < 0.05 are significantly enriched in DEGs.

(6) DEG_item: Number of DEGs with GO annotation.

(7) DEG_list: Number of all reference genes with GO annotation.

3.7.2 Gene Ontology functional classification 

There are two graphs in each group. Fig 1:The x- axis is GO terms enriched and the 
y-axis is the number of differential expression genes. Different colors are used to
distinct biological process, cellular component and molecular function, in which the
enriched GO terms are marked by “*”. Fig 2: The GO terms in the Figure 1, which are
drawn in subsets of graph based on biological process, cellular component, molecular
function and differential expression genes.
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Figure 3.7.2 Gene Ontology functional classification 
There	  are	  two	  graphs	   in	  each	  group.	  Fig	  1:The	  x-‐‑	  axis	   is	  GO	  terms	  enriched	  and	  the	  y-‐‑axis	   is	   the	  number	  of	  differential	  

expression	  genes.	  Different	  colors	  are	  used	  to	  distinct	  biological	  process,	  cellular	  component	  and	  molecular	  function,	   in	  

which	  the	  enriched	  GO	  terms	  are	  marked	  by	  "*".	  Fig	  2:	  The	  GO	  terms	  in	  the	  figure	  1,	  which	  are	  drawn	  in	  subsets	  of	  graph	  

based	  on	  biological	  process,	  cellular	  component,	  molecular	  function	  and	  differential	  expression	  genes.	   	  

3.7.3 GO Enrichment DAG Figure 

Directed Acyclic Graph (DAG) is a way to show the results of GO enrichment of 
DEGs. The branches represent the containment relationships, and the range of 
functions gets smaller and smaller from top to bottom. Generally, the top ten of GO 
enrichment results are selected as the master nodes in directed acyclic graph, showing 
the associated GO terms together via the containment relationship, and the degree of 
colours represent the extent of enrichment. In the project, DAG figures of biological 
process, molecular function and cellular component are drawn, respectively. 

Figure 3.7.3 Illustration of topGO DAG. 
Each node represents a GO term, and TOP10 GO terms are boxed. The darker the color is, the higher is the enrichment level of 

the term. The name and p-value of each term are present on the node. 
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3.8 KEGG Enrichment Analysis 

The interactions of multiple genes may be involved in certain biological functions. 
KEGG (Kyoto Encyclopedia of Genes and Genomes) is a collection of manually 
curated databases dealing with genomes, biological pathways, diseases, drugs, and 
chemical substances. KEGG is utilized for bioinformatics research and education, 
including data analysis in genomics, metagenomics, metabolomics and other omics 
studies. Pathway enrichment analysis identifies significantly enriched metabolic 
pathways or signal transduction pathways associated with differentially expressed 
genes compared with the whole genome background. The formula is: 

Here, N is the number of all genes with a KEGG annotation, n is the number of DEGs 
in N, M is the number of all genes annotated to specific pathways, and m is number of 
DEGs in M. 

3.8.1 KEGG Enrichment List 

Table 3.8.1 KEGG Enrichment List 

Each column stands for: 

(1) #Term: description of KEGG pathways. 

(2) ID: KEGG ID.

(3) Sample number: number of DEGs with pathway annotation. 

(4) Background number: number of all reference genes with pathway annotation. 

(5) P-value: P-value in hypergenometric test.

(6) Corrected P-value: Pathways with corrected p-values < 0.05 are significantly enriched in DEGs.
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3.8.2 KEGG Enrichment Scattered Plot 

Scatter diagram is a graphical display way of KEGG enrichment analysis results. In 
this plot, enrichment degree of KEGG can be measured through Rich factor, Qvalue 
and genes counts enriched to this pathway. Rich factor is the ratio of DEGs counts to 
this pathway in the annotated genes counts. The more the Rich factor is, the higher is 
the degree of enrichment. Qvalue is the adjusted p-value after multiple hypothesis 
testing, and its range is [0,1]. The more the qvalue is close to zero, the more 
significant is the enrichment. Top 20 most significant enriched pathways are chosen 
in KEGG scatter plot, and if the enriched pathways counts is less than 20, then put all 
of them into the plot. KEGG enrichment scatter diagram is as follows. 

Figure 3.8.2 KEGG enrichment scatter plot of DEGs. 
The y-axis shows the name of the pathway and the x-axis shows the Rich factor. Dot size represents the number of different 

genes and the color indicates the q-value. 

3.8.3 KEGG Enrichment Pathway 

KEGG enrichment pathway shows the DEGs significantly enriched pathways. In the 
diagram, nodes containing only up-regulated genes are labeled in red; nodes 
containing only down-regulated genes are labeled in green; nodes containing both up 
and down-regulated genes are in yellow. 
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Figure 3.8.3 KEGG Enrichment Pathway 

3.9 SNP and InDel 

A single nucleotide polymorphism (SNP) is a DNA sequence variation occurring 
commonly within a population (e.g. 1%) in which a single nucleotide in the genome, 
or other shared sequence, differs between members of a biological species or paired 
chromosomes. Two types of variation occur with SNPs, namely transitions and 
transversions, with a probability ratio of 1:2. SNPs occur most often in CG sequences, 
resulting in C to T transitions, which are associated with the tendency of C to be 
methylated in CG sequences. In general, a canonical SNP should be present in more 
than 1% of the whole population. In contrast to SNPs, INDEL refers to insertions or 
deletions of small fragments (one or more nucleotides) comparing to the reference 
genome. 

Analysis tools, such as Samtools and Picard, are used to sort the reads according to 
the genome coordinates, followed by screening out repeated reads. Finally, GATK2 is 
used to carry out SNP calling and INDEL calling. After filtration, results such as 
those shown in the following table are obtained, in which INDEL and SNPs share the 
same columns. In addition, we used SnpSift for functional annotations and enrichment 
analysis.



21 

Table 3.9 SNP analysis results 

#CHROM: Chromosome/Scaffold ID. 

POS: Position of SNP in corresponding chromosome/scaffold. 

REF: Reference genotype. 

ALT: SNP genotype (Alternative genotype). 

other coloums: sample names, show the counts of reads with reference genotype and SNP genotype in each sample, respectively. 

3.10 Novel Gene Prediction 

The RNA-seq reads were assembled according to the reference genomes using 
Rockhopper(R. McClure, et al, 2013), and then compared to known gene structures, 
so that novel gene transcipts were predicted. The novel transcripts were aligned to 
sequences in NCBI NR database using Blastx (cutoff: evalue < 1e-5). Novel 
transcripts with NR annotations were considered as novel potential protein coding 
transcirpts. 

Table 3.10 Novel Gene Prediction 

(1) Gene_ID: ID of novel transcipt

(2) Start: transcription start position

(3) Stop: transcription end position 

(4) Strand: strand specification

(5) NR_GI: Genbank ID of the gene in NR database

(6) NR_ID: serial number of the gene in NR database

3.11 Gene Structure Analysis

In prokaryotic genomes, functionally related genes are usually clustered and regulated 
by a single upstream promoter and a single downstream terminator. Such genetic 
structure is called operon. The genes in the same operon are transcribed together into 
an mRNA strand and then translated to different proteins. A typical prokaryotic 
operon and its regulation mechanism is shown below: 
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According to the loactions of reads in the reference genome, transcription start sites 
(TSS) and transcription termination sites (TTS) of operons are predicted using 
Rockhopper. Then promotors prediction were applied using 700-bp sequences in the 
upstream of TSS, by time-delay neural network (TDNN) method. 

3.11.1 Operon prediction 

Table 3.11.1 Results of operon prediction 

(1) Start: the start position of the first gene

(2) Stop: the end position of the last gene 

(3) Strand: strand specificity

(4) Number of Genes: number of genes in the operon

(5) Genes: list of gene names

3.11.2 TSS and TTS prediction 

Table 3.11.2 Results of TSS and TTS prediction 

(1) TSS: position of TSS

(2) TTS: position of TTS

(3) Strand: strand specificity

(4) Gene: gene name
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3.11.3 Promoter prediction 

Table 3.11.3 Results of promoter prediction 

(1) Sequence ID: sequence ID from input 

(2) strand: strand specificity

(3) Start Position: start position of predicted promoter

(4) End Position: end position of predicted promoter

(5) Score: score of accuracy

(6) Sequence: promoter sequence

3.12 UTR Analysis 

3.12.1 UTR prediction and UTR length distribution 

The 5' and 3' UTR sequences were extracted based on the start and end positions of 
transcription and translation. The length distributions of both 5' and 3' UTR sequences 
were plotted, respectively. For 5' UTR sequences, SD sequences were predicted using 
RBSfinder (rbs region length = 50). For 3' UTR sequences, ρ-independent terminators 
were predicted using TransTermHP. 

Figure 3.12.1 UTR length distributions. 
The x axis shows length intervals of UTRs, and y axis shows densities of UTRs in different length intervals. The red dashed line 

shows the averaged length.
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3.12.2 5' UTR SD sequnece prediction 

Table 3.12.2 Predicted SD sequences in 5' UTR region 

(1) gene_id: gene id

(2) Start: start position of gene

(3) Stop: end position of gene

(4) Strand: strand specificity

(5) Pattern: SD sequence pattern

(6) Position: start position of SD sequence

3.12.3 3' UTR ρ-independent terminator prediction 

Table 3.12.3 Predicted ρ-independent terminators in 3' UTR region 

(1) gene_id: gene id

(2) Term_start: start position of terminator

(3) Term_end: end position of terminator

(4) strand: strand specificity

(5) 5'_tail: 5' tail sequence

(6) 5'_stem: hairpin 5' stem sequence

(7) loop: hairpin loop sequence 

(8) 3'_stem: hairpin 3' stem sequence

(9) 3'_tail: 3' tail sequence

3.13 Antisense Transcripts Prediction 

Natural antisense transcripts(NATs) are a group of endogenous RNAs with sequences 
complementarity to other RNA transcripts. Cis-NATs are transcribed from the 
opposite DNA strand but the same genomic loci of their sense transcripts. Cis-NATs 
widely exist in both prokaryotes and eukaryotes and play important roles in gene 
regulation. Accoding to orientations in the genome, Cis-NATs are clasified to three 
types: enclosed (full overlaped by the sense transcript), convergent (3'-3' overlap) and 
divergent(5'-5' overlap). The genomic loci, type and numbers of cis-NATs were 
indentified using the strand- specific RNA-seq data. 
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Table 3.13 Results of Antisense Transcripts Prediction 

(1) plus_transcript_id: id of sense transcript 

(2) plus_start: start position of sense transcript 

(3) plus_end: end position of sense transcript

(4) plus_length: length of sense transcript 

(5) plus_name(description): name (description) of sense transcript 

(6)~(10): The same infomation as (1)~(5) but for anti-sense transcript 

(11)types: type of anti-sense transcript (including enclosed, convergent and divergent)

(12)overlap_start: start position of overlapped region

(13)overlap_end: end position of overlapped region 

(14)overlap_length: length of overlapped region 

3.14 sRNA Analysis 

In prokaryrotes, non-coding RNAs with length between 50 and 500 nt are defined as 
small RNA (sRNA). Novel intergenic transcripts were discovered by Rockhopper, 
and alignned with sequences in NCBI NR database using Blastx. Novel transcripts 
without NR annotation were sRNA candidates. RNAfold and IntaRNA were applied 
to predict the secondary structures and targeted genes of sRNAs, respectively. 

3.14.1 sRNA prediction and length distribution 

Figure 3.14.1 sRNA length distribution 
The x axis shows length intervals of sRNAs, and y axis shows densities of sRNAs in different length intervals. The red dashed 

line shows the averaged length. 
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3.14.2 sRNA secondary structure prediction 

Figure 3.14.2 sRNA secondary structures 

3.14.3 sRNA targeted gene prediction 

Table 3.14.3 Predicted sRNA targeted genes 

(1) sRNA_id: sRNA id

(2) mRNA_id: target gene id

(3) energy(kcal/mol): Free energy

(4) sRNA_position: sRNA binding position

(5) mRNA_position: target gene binding position

3.14.4 sRNA Expression Quantification 

Table 3.14.4 Resuts of sRNA expression quantification 

sRNA_id: sRNA id 

other columns: fpkm of sNRA in each sample
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4 Appendix 

4.1 Result Directory Lists 

Click to open the result directory.(Note: Please make sure the report directory and the 
result directory is under the same directory). Result Directory Lists: html 

../NHHWXXXXXX_Prokaryotes_results  
├── 1. OriginalData: Raw Data (fastq format) 
├── 2. QC:  Data Quality Control  
│   ├── 2.1. ErrorRate: RNA-seeq Error Rate 
│   ├── 2.2. GC: GC Content Distributions 
│   ├── 2.3. ReadsClassification: Classification of reads 
│   └── 2.4. DataTable: Data Quality Control Summary 
├── 3. Mapping: Results of Mapping to a Reference Genome 
│   ├── 3.1. MapStat: Overview of Mapping Results 
│   ├── 3.2. MapReg: Mapped Regions in Reference Genome (exons, 
introns, or intergenic regions) 
│   ├── 3.3. ChrDen: Distribution of Mapped Reads in Chromosomes 
│   └── 3.4. IGV: Visualization of Mapping Status of Reads using IGV 
├── 4. GeneExprQuatification: Expression Quantification 
│   ├── 4.1. GeneExprQuatification: Gene Expression Quantification 
│   └── 4.2. GeneExpContrast: Contrast of Gene Expression Levels 
├── 5. AdvancedQC: RNA-seq Advanced QC 
│   └── 5.1. Correlation: RNA-Seq Correlations 
├── 6. DiffExprAnalysis: Gene Differential Expression Analysis 
│   ├── 6.1. DEGsList: List of Differentially Expressed Genes (all, 
up-regulated, down-regulated) 
│   ├── 6.2. DEGsFilter: Volcano plot 
│   ├── 6.3. DEGcluster: Cluster Analysis of Gene Expression Differences 
│ │   └── Subcluster 
│   └── 6.4. VennDiagram: The Venn Diagrams 
├── 7. DEG_GOEnrichment: GO Enrichment Analysis of DEGs 
│   ├── 7.1. DEG_GOList: GO Enrichment Result List of DEGs 
│   ├── 7.2. DAG: GO Enrichment DAG Figure 
│   └── 7.3. BAR: GO Enrichment Bar Chart of DEGs 
├── 8. DEG_KEGGEnrichment: KEGG Pathway Enrichment Analysis of 
DEGs  
│   ├── 8.1. DEG_KEGGList: KEGG Enrichment List 
│   ├── 8.2. DEG_KEGGScat: KEGG Enrichment Scattered Plot 
│   └── 8.3. DEG_KEGGPath: KEGG Enrichment Pathways 



│       ├── ALL 
│       ├── DOWN 
│       └── UP  
├── 9. SNP: SNP and Indel Results  
├── 10. NovelGene: Novel Gene Prediction  
├── 11.GeneStruct  
├── 12.UTR  
├── 13. AntiTrans: Antisence Transcript Analysis 
└── 14.sRNA  
    ├── 14.1sRNA_Length  
    ├── 14.2Secondary_Structure  
    ├── 14.3sRNA_Inta  
    └── 14.4sRNA_ExprQuatification 

4.2 Software List 

Software and Parameter 
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