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1. Library Preparation and Sequencing

From the RNA sample to the final data, each step, including sample test, library
preparation, and sequencing, influences the quality of the data, and data quality
directly impacts the analysis results. To guarantee the reliability of the data, quality
control (QC) is performed at each step of the procedure. The workflow is as follows:

Total RNA qualification
i}

rRNA elimination

J
Double-stranded cDNA synthesis

v
cDNA purification
J
End repair, poly-A & adaptor addition
y

Fragments selection and PCR
y
Library quality assessement

y

[Mlumina sequencing

1.1 Total RNA Sample QC

All samples need to pass through the following four steps before library construction:
(1) Agarose Gel Electrophoresis: tests RNA degradation and potential contamination
(2) Nanodrop: tests RNA purity (OD260/0D280)

(3) Qubit: quantifies the RNA (determines concentration)

(4) Agilent 2100: checks RNA integrity



1.2 Library Construction and Quality Assessement

After total RNA sample QC, Ribo-zero kits were used to remove rRNAs, then
fragmentation buffer were added to fragment the mRNAs. Using random hexamers as
primers, the mRNA fragments were reverse-transcribe to single stranded cDNAs.
Atfer the systhesis of single stranded cDNAs, buffer, ANTPs (in which dTTP were
replaced by dUTP), DNA polymerase I and RNase H were applied to systhesis the
complementary cDNA strands. The double stranded cDNAs were purified using
AMPure XP beads. The double stranded cDNAs were end-repaired, polyadenylated,
ligated with adapter sequences and size-selected using AMPure XP beads. Then the
uracil containing strands were degraded by USER Enzyme, and the remained strands
were amplified using PCR and purified using AMPure XP beads. The workflow chart
is as follows:

l rRNA remotion and mRNA fragmentation

l Complementary cDNA strand synthesis

1 Double-stranded cDNA  477p— dUTP
synthesis

l End repair, poly-A &adaptor addition

v
=2

1.3 Library QC

Library concentration was first quantified using a Qubit 2.0 fluorometer (Life
Technologies), and then diluted to 1 ng/ul before checking insert size on an Agilent
2100 and quantifying to greater accuracy by quantitative PCR (Q-PCR) (library
activity >2 nM).



1.4 Sequencing
Libraries are fed into HiSeq machines according to activity and expected data volume.

2. Analysis Workflow

The analysis workflow for data with a reference genome is as follows:
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Note: PPI (Protein-protein interaction) network analysis is only available for species
with known PPI network data.



3. Project Results

3.1 Raw Data

The original raw data from Illumina HiSeq"" are transformed to Sequenced Reads by
base calling. Raw data are recorded in a FASTQ file, which contains sequence
information (reads) and corresponding sequencing quality information.

@HWI-ST1276:71:C1162ACXX:1:1101:1208:2458 1:N:0:CGATGT
NAAGAACACGTTCGGTCACCTCAGCACACTTGTGAATGTCATGGGATCCAT
+

#5522 ?BBBBB?BA@DEEFFCFFHHFFCFFHHHHHHHFAEOECFFD/AEHH

Line 1 begins with a '@' character and is followed by the Illumina Sequence Identifiers
and an optional description.

Line 2 is the raw sequence read.

Line 3 begins with a '+' character and is optionally followed by the same sequence
identifier and description.

Line 4 encodes the quality values for the sequence in Line 2, and must contain the same
number of characters as there are bases in the sequence (Cock et al.).

[llumina Sequence Identifier details:

Identifier Meaning
HWI-ST1276 Instrument — unique identifier of the sequencer
71 run number — Run number on instrument
C1162ACXX FlowCell ID - ID of flowcell
1 LaneNumber — positive integer
1101 TileNumber — positive integer
1208 X —x coordinate of the spot. Integer which can be negative
2458 Y —y coordinate of the spot. Integer which can be negative
1 ReadNumber - 1 for single reads; 1 or 2 for paired ends
N whether it is filtered - NB: Y if the read is filtered out, not in the delivered fastq file, N otherwise
0 control number - 0 when none of the control bits are on, otherwise it is an even number
CGATGT Illumina index sequences



3.2 Data Quality Control

3.2.1 Error Rate

The error rate for each base were transformed by the Phred score as in equation 1
(equation 1: Qphred = -10log;o(e)). The relationship between Phred quality scores Q
and base-calling error “e” is given below:

Relationship between sequencing quality for a single base and Phred score given by the
[llumina CASAVA v1.8 software:

Phred score Base Calling error rate Base Calling correct rate Q-sorce
10 1/10 90% Q10
20 1/100 99% Q20
30 1/1000 99.9% Q30
40 1/10000 99.99% Q40

Sequencing error rate and base quality are affected by the sequencing machine,
reagent and the samples. The error rate distribution has two features :

(1)Error rate increases as the sequencing reads are extended and sequencing reagents
are comsumed.

(2)The first six bases have relatively high error rates due to the random hexamers
used in priming cDNA synthesis (Jiang et al.).

Error rate distribution along reads (treat1)

% Error rate

Position along reads

Figure 3.2.1 Error Rate Distribution

The x-axis shows the base position along each sequencing read and the y-axis shows the base error rate.

3.2.2 GC Content Distribution

AT and GC content distributions were evaluated to detect potential AT or GC
separation, which may affect subsequent gene expression quantification.
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Theoretically, G should equal to C, and A should equal to T throughout the whole
sequencing process for non-stranded libraries, whereas AT/GC separation is normally
observed in stranded libraries. For DGE (Digital Gene Expression) libraries, a large
variation of sequencing error in the first 6-7 bases is allowed due to the usage of
random primers in library construction.

Bases content along reads (CK1)

Percent of bases

Position along reads

Figure 3.2.2 GC content distribution
The x-axis shows each base position within a read, and the y-axis shows the percentage of each base, with each base represented

by a different color.

3.2.3 Data Filtering

Raw reads are filtered to remove reads containing adapters or reads of low quality, so
that downstream analyses are based on clean reads. The filtering process is as follows:

(1) Discard reads with adaptor contamination.

(2) Discard reads when uncertain nucleotides constitute more than 10 percent of either
read (N > 10%).

(3) Discard reads when low quality nucleotides (base quality less than 20) constitute
more than 50 percent of the read.

RNA-seq Adapter sequences (Oligonucleotide sequences of adapters from TruSeq'™
RNA and DNA Sample Prep Kits):

NEBNext® Ultra"™ RNA Library Prep Kit
RNA 5' Adapter (RAS):

5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA
TCT-3'



RNA 3’ Adapter (RA3):
5'-GATCGGAAGAGCACACGTCTGAACTCCAGTCAC (6-nucleotide
index)ATCTCGTATGCCGTCTTCTGCTTG-3'

Classification of Raw Reads (treat1)

Clean Reads (5058171, 95.41%)
Containing N (91513, 1.73%)
Low Quality (63045, 1.00%)
Adapter Related (98717, 1.86%)

Figure 3.2.3 Raw Data
Results are shown as percentage of total raw reads.
(1) Adapter related, reads that had adapter contamination.
(2) Containing N, reads in which uncertain nucleotides constituted more than 10 percent of the read.
(3) Low quality, reads in which low quality nucleotides constituted more than 50 percent of the read.

(4) Clean reads, reads that passed quality control

3.2.4 Data Quality Control Summary

Table 3.2.4 Data Production

Sample name Raw reads Clean reads Clean bases Error rate(%) Q20(%) Q30(%)
CK1 12408246 12124130 1.52G 0.03 96.88 93.45
CK2 11792200 11447320 1.44G 0.03 96.72 93.1
CK3 9249114 9023924 1.12G 0.03 96.64 93.03
treatl 10337270 10116342 1.26G 0.03 96.53 92.82
treat2 16764978 16430586 2.05G 0.01 98.75 96.94
treat3 14732668 14126118 1.77G 0.01 97.11 92.81

(1) Sample name: the names of samples

(2) Raw Reads: the original sequencing reads counts

(3) Clean Reads: number of reads after filtering

(4) Clean Bases: clean reads number multiply read length, saved in G unit

(5) Error Rate: average sequencing error rate, which is calculated by Qphred=-10log10(e)

(6) Q20: percentages of bases whose correct base recognition rates are greater than 99% in total bases
(7) Q30: percentages of bases whose correct base recognition rates are greater than 99.9% in total bases

(8) GC content: percentages of G and C in total bases

GC content(%)
53.56
55.88
53.37
54.69
45.59
46.5



3.3 Mapping to Reference Genome

Algorithm for mapping sequences: appropriate software is chosen according to the
characteristics of the reference genome. In general, Bowtie2 is chosen for the
genomes of bacteria and other species with a high gene density. The mismatch
parameter is set to two, and other parameters are set to default. In general, the total
mapped rate should be more than 70%, and the percentage of reads that can be
mapped to multiple sites in the reference genome should be less than 10%, if there is
no contamination and a correct reference genome is chosen.

3.3.1 Overview of Mapping Status

Table 3.3.1 Overview of Mapping Status

Sample_name CK1 CK2 CK3 treatl treat2 treat3
Total reads 12124130 11447320 9023924 10116342 16430586 14126118
Total mapped 6185606 (51.02%) 10450242 (91.29%) 4805319 (53.25%) 6813186 (67.35%) 15320669 (93.24%) 13251878 (93.81%)

Multiple mapped 644876 (5.32%) 1075470 (9.39%) 447253 (4.96%) 712078 (7.04%) 794433 (4.84%) 904200 (6.4%)
Uniquely mapped 5540730 (45.7%) 9374772 (81.89%) 4358066 (48.29%) 6101108 (60.31%) 14526236 (88.41%) 12347678 (87.41%)

Read-1 2770450 (22.85%) 4687301 (40.95%) 2179090 (24.15%) 3050440 (30.15%) 7254266 (44.15%) 6166795 (43.66%)
Read-2 2770280 (22.85%) 4687471 (40.95%) 2178976 (24.15%) 3050668 (30.16%) 7271970 (44.26%) 6180883 (43.76%)
Reads map to '+' 2770280 (22.85%) 4687285 (40.95%) 2179063 (24.15%) 3050664 (30.16%) 7264591 (44.21%) 6175339 (43.72%)
Reads map to ' 2770450 (22.85%) 4687487 (40.95%) 2179003 (24.15%) 3050444 (30.15%) 7261645 (44.2%) 6172339 (43.69%)

Details of Data Quality Control

(1) Sample name: name of sample.' 1'and' 2' stands for reads starting from different ends, respetively. The total clean reads for
each sample are the sum of reads starting from both ends. (2) Raw reads: counts of raw reads.

(3) Clean reads: counts of clean reads.

(4) Clean bases: sum of nucleotides of all reads in clean data, in denomination of gigabyte.

(5) Error rate: calculated from Equation 1.

(6) Q20 and Q30: percentages of nucleotidess with Phred value larger than 20 and 30 in total nucleotides, respectively.

(7) GC content: percentages of G and C in total nucleotides.

3.3.2 Mapped Regions in Reference Genome

Mapped regions are classified base on the structural annotation of the reference genome.
Exon-mapped reads should be abundant if the reference genome is well-annotated.
Reads map to intergenic regions may due to weak annotation of the reference genome,
noncoding RNA or background noise.



Percent of reads mapped to genome regions (treat1)

regions
W cos
[ intergenic

Figrue 3.3.2 Classification of Reads According to Mapped Region.

3.3.3 Distribution of Mapped Reads in Chromosomes

The distribution of mapped reads in chromosomes was estimated by statistics on the
genomic locations of total mapped reads. A random selected sample of total mapped
reads and their genomic location distribution is displayed in below figure:

Figure 3.3.3 Distribution Plot of Mapped Reads in Chromosomes.
The outermost circle represents the reference genome. The region with grey background shows the distribution of the random
selected sample of reads, in which the reads mapped to positive and negetive chains are in red and blue, respectively. The innermost
circle shows the positvie chain coverage distribution in orange and teh negative chain coverage distribution in green, respectively.

Strange dots were discarded if from the mean of coverages more than 3 times the standard deviation.



3.3.4 Visualization of Mapping Status of Reads

Files are provided in BAM format, a standard file format that contains mapping results,
and the corresponding reference genome and gene annotation file for some species. The
Integrative Genomics Viewer (IGV) is recommended for visualizing data from BAM
files. The IGV has several features: (1) it displays the positions of single or multiple
reads in the reference genome, as well as read distribution between annotated exons,
introns or intergenic regions, both in adjustable scale; (2) displays the read abundance
of different regions to demonstrate their expression levels, in adjustable scale; (3)
provides annotation information for both genes and splicing isoforms; (4) provides
other related annotation information; (5) displays annotations downloaded from remote
servers and/or imported from local machines.

kv B ===
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°
16, 1,78 « B « » @O X P BEonngun {

......

3.4 Expression Quantification

3.4.1 Expression Quantification

Gene expression level is measured by transcript abundance. The greater the abundance,
the higher is the gene expression level. In our RNA-seq analysis, the gene expression
level is estimated by counting the reads that map to genes or exons. Read count is not
only proportional to the actual gene expression level, but is also proportional to the
gene length and the sequencing depth. In order for the gene expression levels estimated
from different genes and experiments to be comparable, the FPKM is used. In RNA-seq,
FPKM, short for the expected number of Fragments Per Kilobase of transcript
sequence per Millions base pairssequenced, is the most commonest method of
estimating gene expression levels, which takes into account the effects of both
10



sequencing depth and gene length oncounting of fragments(Trapnell, Cole, et al.,
2010).

HTSeq software was used to analyze the gene expression levels in this experiment,
using the union mode. The result files present the number of genes with different
expression levels and the expression level of single genes. In general, an FPKM value
of 0.1 or 1 is set as the threshold for determining whether the gene is expressed or not.

Table 3.4.1 The number of genes with different expression levels

FPKM Interval CK1 CK2 CK3 treatl treat2 treat3
0~1 854(15.83%) 829(15.36%) 923(17.11%) 905(16.77%) 616(16.63%) 633(17.09%)
1~3 248(4.60%) 212(3.93%) 245(4.54%) 274(5.08%) 36(0.97%) 40(1.08%)
3~15 832(15.42%) 767(14.21%) 1029(19.07%) 1032(19.13%) 217(5.86%) 224(6.05%)
15~60 1428(26.46%) 1413(26.19%) 1423(26.37%) 1365(25.30%) 659(17.79%) 662(17.87%)
>60 2034(37.69%) 2175(40.31%) 1776(32.91%) 1820(33.73%) 2177(58.76%) 2146(57.92%)

Table 3.4.2 Gene expression levels

Gene_id CK1 CK2 CK3 treatl treat2 treat3
PSYRH_RS00175 4398.278343 2136.658857 2251.261063 4110437105 462.3299003 342.9179606
PSYRH_RS15710 35.35451423 31.50135285 27.96744984 14.38204746 27.20701432 30.11574595
PSYRH_RS17820 25.98862455 3931446147 26.88670611 21.79325744 400.5975882 161.7983214
PSYRH_RS20900 145.4266875 87.0431443 132.1648198 82.07482199 58.56553557 41.31620085

3.4.2 Distributions of gene expression levels

An FPKM distribution diagram and violin plot were applied to compare gene
expression levels of different group pf samples. For biological replicates, the mean
FPKM values were used.

FPKM density distribution
FPKM distribution

Group
oK
treat

Group

Density

5 ne

log10(FPKM+1)

>

log10(FPKM)

Figure 3.4.2 Distributions of gene expression levels
Upper panel: FPKM distribution, the x-axis shows the log,((FPKM+1) and the y-axis shows gene density. Lower panel: FPKM
violin Plot, the x-axis shows the sample names and the y-axis shows the log,((FPKM+1). Each violin has five statistical
magnitudes (max value, upper quartile, median, lower quartile and min value). Lower right panel : FPKM distribution, the x-axis

shows the log,((FPKM+1) and the y-axis shows gene density.
11



3.5 RNA-seq Advanced QC

3.5.1 Correlation of RNA-seq samples

Biological replicates are necessary for any biological experiment, including those
involving RNA-seq technology (Hansen et al.). In RNA-seq, replicates have a
two-fold purpose. First, they demonstrate whether the experiment is repeatable, and
secondly, they can reveal differences in gene expression between samples. The
correlation between samples is an important indicator for testing the reliability of the
experiment. The closer the correlation coefficient is to 1, the greater the similarity of
the samples. ENCODE suggests that the square of the Pearson correlation coefficient
should be larger than 0.92, under ideal experimental conditions. In this project, the R?
should be larger that 0.8.

Pearson correlation between samples

freat3- 0.664  0.668  0.679 ...
HQ
1.0
0.704  0.698
0.9

0.699

treat! -

CK3 -

CI'(2-.

0.704

0.679
0.704 0713  0.668

0699 0705 0.664

<

Figure 3.5.1 Correlation of RNA-seq samples
Heat maps of the correlation coefficient between samples are shown.(If the samples are more than 4 groups, then only present the
scatter diagrams between biological replicates The scatter diagrams demonstrate the correlation coefficient between samples; R?,

the square of the Pearson coefficient.
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3.6 Differential Expression Analysis

3.6.1 List of differentially expressed genes

The input data for differential gene expression analysis are readcounts from the gene
expression level analytsis. The differental gene expression analysis contains three
steps:

1)Readcounts Normalization;
2)Model dependent p-value estimation;
3)FDR value estimation based on multiple hypothesis testing.

Diferent softwares and paarameter sets are applied in differnt situations. The analysis
methods are listed below:

Normalzation p-value estimation FDR estimation Differentially expressed gene
Type Software X
method model method screening stardard
With biological DESeq(Anders et Negative binomial .
duplicates al, 2010) DESeq distribution BH padj <0.05
Without biological DEGseq(Wang et T™MM Poisson distribution BH |log,(FoldChange)| > 1&qvalue < 0.005

duplicate al, 2010)

The readcount value of the ith gene in the jth sample is Kj;, then
Negative binomial distribution: Kj; ~ NB(},I,ij,Gijz)
Poisson distribution: K;; ~ P(;)

Table 3.6.1 List of differentially expressed genes

Gene Id CK treat log2FoldChange pval p-adjusted
Novel00034 710.053852 1484.110192 -1.0636 2.47E-49 9.42E-48
Novel00050 8.885473304 30.72281534 -1.7898 0.00090134 0.0035153
Novel00051 25.87240756 60.95010139 -1.2362 0.00059057 0.0024209
Novel00055 36.58724302 115.9538514 -1.6641 1.1012E-09 9.5009E-09

Each column stands for:

(1) Gene id: id of differentially expressed gene

(2) readcount_Samplel: normalized readcount of Samplel
(3) readcount_Sample2: normalized readcount of Sample2
(4) log2FoldChange: log,(Samplel/Sample2)

(5) pvalue(pval): p-value of statistical hypothesis testing

(6) qvalue(pad;j): adjusted p-value. The lower the qvalue is, the more significant the gene differentially expressed.

13



3.6.2 Screening of differentially expressed genes

Volcano plots are used to illustrate the overall distribution of differentially expressed
genes.

treat vs CK

"g DEG (14443)
Q

~§ + up: 6997
g’ - down: 7446
=

log,(fold change)

Figure 3.6.2 Volcano plot for differentially expressed genes
The x-axis shows the fold change in gene expression between different samples, and the y-axis shows the statistical significance
of the differences. Significantly up and down regulated genes are highlighted in red and green, respectively. Genes do not show

significant differential expression are in blue.

3.6.3 Cluster Analysis of Gene Expression Differences

Cluster analysis is used to find genes with similar expression patterns under various
experimental conditions. By clustering genes with similar expression patterns, it may
be possible to discern unknown functions of previously characterized genes or the
function of unknown genes. In hierarchical clustering, areas of different colors denote
different groups (clusters) of genes, and genes within each cluster may have similar
functions or take part in the same biological process.

In addition to the FPKM cluster, the H-cluster, K-means and SOM are also used to
cluster the log,(ratios). Genes within the same cluster exhibit the same trends in
expression levels under different conditions.



Cluster ysis of diff tially exp! genes

ple)
eal;

Figure 3.6.3 Cluster analysis.
Upper panel: the overall results of FPKM cluster analysis, clustered using the logo((FPKM+1) value. Red denotes genes with
high expression levels, and blue denotes genes with low expression levels. The color range from red to blue represents the
logio(FPKM+1) value from large to small. Lower panel: log,(ratios) line chart. Each grey line in a subline chart represents the
relative expression value of a gene cluster under different experimental conditions, and the blue line represents the mean value.

The x-axis shows the experimental condition and the y-axis shows the relative expression level.

3.6.4 Venn diagram of differentially expressed genes

The Venn diagram presents the counts of differential expressed genes of all compares
and the counts of genes in the intersections of different compares.

treat3vsCK3 treat3vsCK2
treat1vsCK1 treat2vsCK2
1465 763
844 1921 4
1176 220 115 133
73
346 57
24 208
80

Figure 3.6.4 Venn diagram of differentially expressed genes
The sum of numbers in each circle is the counts of differentially expressed genes of the certain compare, and the numbers in the

intersetions are the counts of genes differentially expressed in all overlaped compares.
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3.7 GO Enrichment Analysis

Gene Ontology (GO, http://www.geneontology.org/)is a major bioinformatics
initiative to unify the presentation of gene and gene product attributes across all
species. DEGs refer to differentially expressed genes.

GO enrichment analysis is used by GOseq (Young et al, 2010), which is based on
Wallenius non-central hyper-geometric distribution. Its characteristics are: the
probability of drawing an individual from a certain category is different from that of
drawing it from outsides of the category, and this difference is obtained from
estimating of the preference of gene length.

3.7.1 GO Enrichment Result List of DEGs

Table 3.7.1 Significantly Enriched GO Terms in DEGs

GO accession Description Term type Over represented p-Value Corrected p-Value DEG item DEG list
G0:0043900 regulation of multi-organism process  biological_process 0.00031841 0.46106 3 221
G0:0046999 regulation of conjugation biological_process 0.00031841 0.46106 3 221
G0:0006544 glycine metabolic process biological_process 0.0007502 0.52094 6 221
G0:0003735 structural constituent of ribosome molecular_function 0.00089942 0.52094 13 221

Each column stands for:

(1) GO accession: Gene Ontology entry

(2) Description: Detailed description of Gene Ontology.

(3) Term_type: GO types, including cellular component, biological process, and molecular function.

(4) Over_represented_pValue: p-value in hypergenometric test.

(5) Corrected_pValue: Corrected P-value; GO with corrected p-values < 0.05 are significantly enriched in DEGs.
(6) DEG_item: Number of DEGs with GO annotation.

(7) DEG_list: Number of all reference genes with GO annotation.

3.7.2 Gene Ontology functional classification

There are two graphs in each group. Fig 1:The x- axis is GO terms enriched and the
y-axis is the number of differential expression genes. Different colors are used to
distinct biological process, cellular component and molecular function, in which the
enriched GO terms are marked by “*”. Fig 2: The GO terms in the Figure 1, which are
drawn in subsets of graph based on biological process, cellular component, molecular
function and differential expression genes.
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Figure 3.7.2 Gene Ontology functional classification
There are two graphs in each group. Fig 1:The x- axis is GO terms enriched and the y-axis is the number of differential
expression genes. Different colors are used to distinct biological process, cellular component and molecular function, in
which the enriched GO terms are marked by "*". Fig 2: The GO terms in the figure 1, which are drawn in subsets of graph

based on biological process, cellular component, molecular function and differential expression genes.

3.7.3 GO Enrichment DAG Figure

Directed Acyclic Graph (DAG) is a way to show the results of GO enrichment of
DEGs. The branches represent the containment relationships, and the range of
functions gets smaller and smaller from top to bottom. Generally, the top ten of GO
enrichment results are selected as the master nodes in directed acyclic graph, showing
the associated GO terms together via the containment relationship, and the degree of
colours represent the extent of enrichment. In the project, DAG figures of biological
process, molecular function and cellular component are drawn, respectively.

Figure 3.7.3 Illustration of topGO DAG.
Each node represents a GO term, and TOP10 GO terms are boxed. The darker the color is, the higher is the enrichment level of

the term. The name and p-value of each term are present on the node.
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3.8 KEGG Enrichment Analysis

The interactions of multiple genes may be involved in certain biological functions.
KEGG (Kyoto Encyclopedia of Genes and Genomes) is a collection of manually
curated databases dealing with genomes, biological pathways, diseases, drugs, and
chemical substances. KEGG is utilized for bioinformatics research and education,
including data analysis in genomics, metagenomics, metabolomics and other omics
studies. Pathway enrichment analysis identifies significantly enriched metabolic
pathways or signal transduction pathways associated with differentially expressed
genes compared with the whole genome background. The formula is:

MNX(N-M
mollg n—i
p=1- Z N
i=0 LY
n

Here, N is the number of all genes with a KEGG annotation, n is the number of DEGs
in N, M is the number of all genes annotated to specific pathways, and m is number of
DEGs in M.

3.8.1 KEGG Enrichment List

Table 3.8.1 KEGG Enrichment List

Sample Background

#Term Database ID P-Value Corrected P-Value
number number
Ribosome KEGG sb03010 15 70 1.51316397372e-05 0.000741450347125
PATHWAY P : :
Starch and sucrose metabolism KEGG sb00500 7 25 0.000827054978654 0.020262846977
PATHWAY P : :
Glycine, serine and threonine KEGG
metabolism PATHWAY psb00260 9 48 0.00184904201267 0.0302010195403
Protein export KEGG sb03060 4 17 0.0187419418178 0.186638292562
P PATHWAY P : :

Each column stands for:

(1) #Term: description of KEGG pathways.

(2) ID: KEGG ID.

(3) Sample number: number of DEGs with pathway annotation.

(4) Background number: number of all reference genes with pathway annotation.
(5) P-value: P-value in hypergenometric test.

(6) Corrected P-value: Pathways with corrected p-values < 0.05 are significantly enriched in DEGs.



3.8.2 KEGG Enrichment Scattered Plot

Scatter diagram is a graphical display way of KEGG enrichment analysis results. In
this plot, enrichment degree of KEGG can be measured through Rich factor, Qvalue
and genes counts enriched to this pathway. Rich factor is the ratio of DEGs counts to
this pathway in the annotated genes counts. The more the Rich factor is, the higher is
the degree of enrichment. Qvalue is the adjusted p-value after multiple hypothesis
testing, and its range is [0,1]. The more the qvalue is close to zero, the more
significant is the enrichment. Top 20 most significant enriched pathways are chosen
in KEGG scatter plot, and if the enriched pathways counts is less than 20, then put all
of them into the plot. KEGG enrichment scatter diagram is as follows.

Statistics of Pathway Enrichment
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Figure 3.8.2 KEGG enrichment scatter plot of DEGs.

The y-axis shows the name of the pathway and the x-axis shows the Rich factor. Dot size represents the number of different

genes and the color indicates the g-value.

3.8.3 KEGG Enrichment Pathway

KEGG enrichment pathway shows the DEGs significantly enriched pathways. In the
diagram, nodes containing only up-regulated genes are labeled in red; nodes
containing only down-regulated genes are labeled in green; nodes containing both up
and down-regulated genes are in yellow.
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Figure 3.8.3 KEGG Enrichment Pathway

3.9 SNP and InDel

A single nucleotide polymorphism (SNP) is a DNA sequence variation occurring
commonly within a population (e.g. 1%) in which a single nucleotide in the genome,
or other shared sequence, differs between members of a biological species or paired
chromosomes. Two types of variation occur with SNPs, namely transitions and
transversions, with a probability ratio of 1:2. SNPs occur most often in CG sequences,
resulting in C to T transitions, which are associated with the tendency of C to be
methylated in CG sequences. In general, a canonical SNP should be present in more
than 1% of the whole population. In contrast to SNPs, INDEL refers to insertions or
deletions of small fragments (one or more nucleotides) comparing to the reference
genome.

Analysis tools, such as Samtools and Picard, are used to sort the reads according to
the genome coordinates, followed by screening out repeated reads. Finally, GATK?2 is
used to carry out SNP calling and INDEL calling. After filtration, results such as
those shown in the following table are obtained, in which INDEL and SNPs share the
same columns. In addition, we used SnpSift for functional annotations and enrichment
analysis.
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Table 3.9 SNP analysis results

#CHROM POS REF ALT CK1 CK2 CK3 treatl treat2 treat3
NC_999999.1 129 G C 0,250 0,238 1,235 3216 1,231 2,254
NC_999999.1 180 T C 0243 0,173 0,166 0,141 0,134 0,143
NC_999999.1 264 C G 1,109 0,48 0,41 0,33 0,44 045
NC_999999.1 315 C T 0,111 0,50 0,42 0,37 0,32 035

#CHROM: Chromosome/Scaffold ID.

POS: Position of SNP in corresponding chromosome/scaffold.
REF: Reference genotype.

ALT: SNP genotype (Alternative genotype).

other coloums: sample names, show the counts of reads with reference genotype and SNP genotype in each sample, respectively.

3.10 Novel Gene Prediction

The RNA-seq reads were assembled according to the reference genomes using
Rockhopper(R. McClure, et al, 2013), and then compared to known gene structures,
so that novel gene transcipts were predicted. The novel transcripts were aligned to
sequences in NCBI NR database using Blastx (cutoff: evalue < 1le-5). Novel
transcripts with NR annotations were considered as novel potential protein coding
transcirpts.

Table 3.10 Novel Gene Prediction

Gene_ID Start Stop Strand NR_GI NR_ID
Novel00001 5982 6225 - 330898604 EGH30023.1
Novel00002 63915 64059 + 515849134 WP_017279887.1
Novel00003 161099 161289 - 520937825 WP_020348691.1
Novel00004 219113 219299 + 520937825 WP_020348691.1

(1) Gene_ID: ID of novel transcipt

(2) Start: transcription start position

(3) Stop: transcription end position

(4) Strand: strand specification

(5) NR_GI: Genbank ID of the gene in NR database
(6) NR_ID: serial number of the gene in NR database

3.11 Gene Structure Analysis

In prokaryotic genomes, functionally related genes are usually clustered and regulated
by a single upstream promoter and a single downstream terminator. Such genetic
structure is called operon. The genes in the same operon are transcribed together into
an mRNA strand and then translated to different proteins. A typical prokaryotic
operon and its regulation mechanism is shown below:
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According to the loactions of reads in the reference genome, transcription start sites
(TSS) and transcription termination sites (TTS) of operons are predicted using
Rockhopper. Then promotors prediction were applied using 700-bp sequences in the
upstream of TSS, by time-delay neural network (TDNN) method.

3.11.1 Operon prediction

Table 3.11.1 Results of operon prediction

Start Stop  Strand Number of Genes
1 6226 + 4

7160 11549 4

11630 13107 + 2

15694 19338 3

(1) Start: the start position of the first gene

(2) Stop: the end position of the last gene

(3) Strand: strand specificity

(4) Number of Genes: number of genes in the operon

(5) Genes: list of gene names

3.11.2 TSS and TTS prediction

Genes
PSYRH_RS00005, PSYRH_RS00010, PSYRH_RS00015, PSYRH_RS00020
PSYRH_RS00030, PSYRH_RS00035, PSYRH_RS00040, PSYRH_RS00045
PSYRH_RS00050, PSYRH_RS00055
PSYRH_RS00065, PSYRH_RS00070, PSYRH_RS00075

Table 3.11.2 Results of TSS and TTS prediction

TSS TTS
1575 2678
2692 3804
3805 6245
6225 5982

(1) TSS: position of TSS
(2) TTS: position of TTS
(3) Strand: strand specificity

(4) Gene: gene name

Strand

+

+

+

Gene
PSYRH_RS00010
PSYRH_RS00015
PSYRH_RS00020

rna00001
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3.11.3 Promoter prediction

Table 3.11.3 Results of promoter prediction

Sequence ID strand Start Position End Position Score Sequence
PSYRH_RS21755.head - 582 627 0.85 AGGTTGCCACCTTTTTGCAGAGTCAAAGCCATGATTCGTTTATCTCCTTT
sSRNA00116.head - 556 601 0.85 AGGTTGCCACCTTTTTGCAGAGTCAAAGCCATGATTCGTTTATCTCCTTT
PSYRH_RS21765.head - 186 231 0.99 GGTTTTCAAGGCCTCGGCACGACCAATTTCAAAATCGAACTCGAACTTTG
PSYRH_RS21770.head - 612 657 0.85 ACTGATGGAAGCACGGGTCTTGTCGAGCGTAATCTTGCTCAGACTGACGG

(1) Sequence ID: sequence ID from input

(2) strand: strand specificity

(3) Start Position: start position of predicted promoter
(4) End Position: end position of predicted promoter
(5) Score: score of accuracy

(6) Sequence: promoter sequence

3.12 UTR Analysis

3.12.1 UTR prediction and UTR length distribution

The 5' and 3' UTR sequences were extracted based on the start and end positions of
transcription and translation. The length distributions of both 5' and 3' UTR sequences
were plotted, respectively. For 5' UTR sequences, SD sequences were predicted using
RBSfinder (rbs region length = 50). For 3' UTR sequences, o-independent terminators
were predicted using TransTermHP.

Length Distribution of 3'UTR Length Distribution of 5'UTR

density
_ density

—

Figure 3.12.1 UTR length distributions.
The x axis shows length intervals of UTRs, and y axis shows densities of UTRs in different length intervals. The red dashed line

shows the averaged length.
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3.12.2 5' UTR SD sequnece prediction

Gene_ID
PSYRH_RS00035
PSYRH_RS00050
PSYRH_RS00075
PSYRH_RS00080

(1) gene_id: gene id

(2) Start: start position of gene

(3) Stop: end position of gene

(4) Strand: strand specificity

(5) Pattern: SD sequence pattern

(6) Position: start position of SD sequence

Start
8538

11630
19338
19898

Stop Strand
7996

12181 +
18394

19392

3.12.3 3' UTR p-independent terminator prediction

Table 3.12.3 Predicted p-independent terminators in 3' UTR region

Gene_ID  Term_start Term_end Strand

PSYRH_RS00230 46382
PSYRH_RS00435 96421
PSYRH_RS00440 97913
PSYRH_RS00760 163070

(1) gene_id: gene id

(2) Term_start: start position of terminator

(3) Term_end: end position of terminator

(4) strand: strand specificity

(5) 5'_tail: 5' tail sequence

(6) 5'_stem: hairpin 5' stem sequence

46355
96408
97881
163041

(7) loop: hairpin loop sequence

(8) 3'_stem: hairpin 3' stem sequence

(9) 3'_tail: 3' tail sequence

5'_stem

GCTGCGGGGGAAGCA  GGGACAAGCGGT
CTAAAGCAAAAAAAA CCcGT
TGCGGTACAACAAAA  GCCGATGACACGTCG
CAGTATTCCAGACAA GCAAACGCCCCGA

3.13 Antisense Transcripts Prediction

Loop
GAGC
CGAA
CTCT
CAAG

Table 3.12.2 Predicted SD sequences in 5' UTR region

Pattern
AGGAG
GGGAG
ATGAG
TGCAG

3'_stem
ACCACTTGTCCC
ACGGG

Position
8548
11621
19349
19914

3'_tail
TGGCAGGCAAACGTC
C GTCTGTT

CG-CGCGCCATCGGC TGCAATACCCGAGTG

TCGAGGCGTTTGC

TTGAGCA CGAG

Natural antisense transcripts(NATs) are a group of endogenous RNAs with sequences
complementarity to other RNA transcripts. Cis-NATs are transcribed from the
opposite DNA strand but the same genomic loci of their sense transcripts. Cis-NATSs
widely exist in both prokaryotes and eukaryotes and play important roles in gene
regulation. Accoding to orientations in the genome, Cis-NATs are clasified to three
types: enclosed (full overlaped by the sense transcript), convergent (3'-3' overlap) and
divergent(5'-5' overlap). The genomic loci, type and numbers of cis-NATs were
indentified using the strand- specific RNA-seq data.
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Table 3.13 Results of Antisense Transcripts Prediction

Plus_gene_id Plus_start Plus_end Plus_length Plus_name(description) Minus_gene_id Minus_start Minus_end Minus_length

Novel00005 317022 317206 185 (novelGene) PSYRH_RS01520 317018 317821 804
Novel00008 418580 418673 94 (novelGene) PSYRH_RS01975 416522 419037 2516
Novel00009 506418 506596 179 (novelGene) PSYRH_RS02370 506218 506934 717
Novel00010 553781 554131 351 (novelGene) PSYRH_RS02520 553414 554166 753

(1) plus_transcript_id: id of sense transcript

(2) plus_start: start position of sense transcript

(3) plus_end: end position of sense transcript

(4) plus_length: length of sense transcript

(5) plus_name(description): name (description) of sense transcript

(6)~(10): The same infomation as (1)~(5) but for anti-sense transcript

(1D)types: type of anti-sense transcript (including enclosed, convergent and divergent)
(12)overlap_start: start position of overlapped region

(13)overlap_end: end position of overlapped region

(14)overlap_length: length of overlapped region

3.14 sSRNA Analysis

In prokaryrotes, non-coding RNAs with length between 50 and 500 nt are defined as
small RNA (sRNA). Novel intergenic transcripts were discovered by Rockhopper,
and alignned with sequences in NCBI NR database using Blastx. Novel transcripts
without NR annotation were SRNA candidates. RNAfold and IntaRNA were applied
to predict the secondary structures and targeted genes of SRNAs, respectively.

3.14.1 sRNA prediction and length distribution

Length Distribution of sSRNA

_density

100 150 200 250 300
length of sRNA

Figure 3.14.1 sRNA length distribution
The x axis shows length intervals of sSRNAs, and y axis shows densities of SRNAs in different length intervals. The red dashed

line shows the averaged length.
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3.14.2 sRNA secondary structure prediction

Figure 3.14.2 sRNA secondary structures

3.14.3 sRNA targeted gene prediction

Table 3.14.3 Predicted sRNA targeted genes

sRNA_id mRNA_id energy(kcal/mol) SRNA_position mRNA_position
sRNA00001 PSYRH_RS06180 -11.8829 28 --42 457 -- 473
sRNA00002 PSYRH_RS06180 -13.885 2--18 716 --729
sRNA00003 PSYRH_RS06180 -9.29651 30 --47 161 --179
SRNA00004 PSYRH_RS06180 -10.8061 1--16 942 -- 957

(1) sRNA_id: sRNA id

(2) mRNA _id: target gene id

(3) energy(kcal/mol): Free energy

(4) sRNA_position: sSRNA binding position

(5) mRNA_position: target gene binding position

3.14.4 sSRNA Expression Quantification

Table 3.14.4 Resuts of SRNA expression quantification

sRNA_id CKl1 CK2 CK3 treatl treat2 treat3
sRNA00110 997.9491536 1350.219897 1015.237987 1101.540375 1015.237987 1101.540375
sRNA00105 969.4659137 690.8136415 915.0549281 831.8828702 915.0549281 831.8828702
sRNA00103 933.9579215 1478.629578 462.4471142 389.2721515 462.4471142 389.2721515
sRNA00007 92.61158118 139.7485272 233.1034234 459.15125 233.1034234 459.15125

sRNA _id: sRNA id

other columns: fpkm of SNRA in each sample
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4 Appendix

4.1 Result Directory Lists

Click to open the result directory.(Note: Please make sure the report directory and the
result directory is under the same directory). Result Directory Lists: html

/NHHWXXXXXX Prokaryotes results

—— 1. OriginalData: Raw Data (fastq format)

—— 2. QC: Data Quality Control

| —— 2.1. ErrorRate: RNA-seeq Error Rate

| —— 2.2.  GC:GC Content Distributions

| —— 2.3. ReadsClassification: Classification of reads

| L—— 2.4. DataTable: Data Quality Control Summary

—— 3. Mapping: Results of Mapping to a Reference Genome

| —— 3.1. MapStat: Overview of Mapping Results

| —— 3.2. MapReg: Mapped Regions in Reference Genome (exons,
introns, or intergenic regions)

| —— 3.3.  ChrDen: Distribution of Mapped Reads in Chromosomes

| L—— 3.4. IGV: Visualization of Mapping Status of Reads using IGV

—— 4. GeneExprQuatification: Expression Quantification

| —— 4.1. GeneExprQuatification: Gene Expression Quantification

| L—— 42. GeneExpContrast: Contrast of Gene Expression Levels

—— 5. AdvancedQC: RNA-seq Advanced QC

| L—— 5.1. Correlation: RNA-Seq Correlations

—— 6. DiffExprAnalysis: Gene Differential Expression Analysis

| —— 6.1. DEGsList: List of Differentially Expressed Genes (all,
up-regulated, down-regulated)

| —— 6.2. DEGsFilter: Volcano plot

| —— 6.3. DEGcluster: Cluster Analysis of Gene Expression Differences

| | L—— Subcluster

| lL—— 6.4. VennDiagram: The Venn Diagrams

— 7. DEG_GOEnrichment: GO Enrichment Analysis of DEGs

| —— 7.1. DEG_GOList: GO Enrichment Result List of DEGs

| —— 7.2. DAG: GO Enrichment DAG Figure

| —— 7.3, BAR: GO Enrichment Bar Chart of DEGs

8. DEG_KEGGEnrichment: KEGG Pathway Enrichment Analysis of

—— 8.1. DEG KEGGList: KEGG Enrichment List
—— 8.2. DEG KEGGScat: KEGG Enrichment Scattered Plot

L—— 8.3. DEG KEGGPath: KEGG Enrichment Pathways
27
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| —— ALL
| [—— DOWN
| —— upP
—— 9. SNP: SNP and Indel Results
—— 10. NovelGene: Novel Gene Prediction
F——11.GeneStruct
—— 12.UTR
—— 13. AntiTrans: Antisence Transcript Analysis
L—— 14.sRNA

—— 14.1sRNA_Length

—— 14.2Secondary_Structure

—— 14.3sRNA_Inta

L—— 14.4sRNA_ExprQuatification

4.2 Software List

Software and Parameter

Analysis Software Version Remarks
Mapping Bowtie2 223 Mapping to a reference genome.
Expression Quantification HTSeq v0.6.1
Novel Gene Prediction Rockhopper 121
SNP detection GATK2 v32
DEGSeq 1120 For sample with bio-replicate using

DESeqlsamples without bio-

Differential Expression Analysis DESeq 1.10.1 ! )
replicate using DEGSeq. EdgeR for
edgeR 3.0.8 specific conditions.
. N Hmmscan is used to get GO
GO Enrichment GOSeqltopGO,hmmscan Release2.12 .
annotation for novel genes.
KEGG Enrichment KOBAS v2.0
Operon and TSSITTS Prediction Rockhopper 121
SD Sequence prediction RBSfinder v1.0
Rho-independent Terminator
. TranstermHP v2.0.9
Sequence Prediction
sSRNA Secondary Structure
RNAfold 2.0

Prediction

sRNA Targeted Gene Prediction IntaRNA v1i25
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