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1 Experimental Procedures 
From RNA sample preparation to data acquisition, each step such as sample detection, 
library construction and sequencing, can affect the quality and quantity of data. High 
quality data is essential for accurate and confidential analysis. In order to ensure the 
quality and reliability of the sequencing data, every step of data production is under 
rigid control. The workflow is as follows:

1.1 Quality check of total RNAs 
There are four methods for quality check (QC) of RNA samples: 
(1) Agarose gel electrophoresis: for RNA integrity and potential contamination
(2) Nanodrop: for RNA purity (OD260/OD280)
(3) Qubit: quantify RNA concentration
(4) Agilent 2100: check RNA integrity again

1.2 Library construction 
After RNA QC, rRNAs were removed by using epicentre Ribo-ZeroTM Kit. The 
purified RNAs were first fragmented randomly to short fragments of 150-200 bp by 
addition of fragmentation buffer, then cDNA synthesis followed using random 
hexamers. After the first strand was synthesized, a custom second-strand synthesis 
buffer (Illumina), dNTPs (dUTP, dATP, dGTP and dCTP) and DNA polymerase I 
were added to synthesize the second-strand. Then followed by purification by 
AMPure XP beads, terminal repair, polyadenylation, sequencing adapter ligation, size 
selection and degradation of second-strand U-contained cDNA by the USER enzyme. 
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The strand-specific cDNA library was generated after the final PCR enrichment. The 
workflow is as follows: 

1.3 Library QC 
The concentration of library was first quantified by Qubit2.0, then diluted to 1 ng/ul, 
and the insert size was checked by Agilent 2100 and was further quantified by qPCR 
(library concentration > 2 nM). 

1.4 Sequencing 
If the library qualifies, it will be sequenced on an Illumina HiSeq platform according 
to effective concentration and data volume. 
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2 Bioinformatics Analysis Procedures 
The flowchart below depicts the bioinformatics analysis pipeline we used. 

3 Analysis Result 

3.1 Raw Data 

The original raw image data obtained from high throughput sequencing platforms (e.g. 
Illumina platform) is transformed to sequenced reads by base calling. The sequenced 
reads are regarded as raw data or raw reads, which is recorded in FASTQ file (fq) 
containing sequence information (reads) and corresponding sequencing quality 
information. 
Every read in FASTQ format is stored in four lines as follows: 
@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18: ATCACG 
GCTCTTTGCCCTTCTCGTCGAAAATTGTCTCCTCATTCGAAACTTCTCTGT 
+ 
@@CFFFDEHHHHFIJJJ@FHGIIIEHIIJBHHHIJJEGIIJJIGHIGHCCF 
Line 1 beginning with a '@' character is followed by a sequence identifier and an 
optional description (like a FASTA title line). Line 2 is the raw sequence reads. Line 3 
begins with a '+' character and is optionally followed by the same sequence identifier 
(and any description) again. Line 4 encodes the quality values for the sequence in 
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Line 2, and must contain the same number of characters as bases in the sequence. 
Table 3.1.1 Illumina sequence identifier details 

EAS139 The unique instrument name 

136 Run ID 

FC706VJ Flowcell ID 

2 Flowcell lane 

2104 Tile number within the flowcell lane 

15343 'x'-coordinate of the cluster within the tile 

197393 'y'-coordinate of the cluster within the tile 

1 Member of a pair, 1 or 2 (paired-end or mate-pair reads only) 

Y Y if the read fails filter (read is bad), N otherwise 

18 0 when none of the control bits are on, otherwise it is an even number 

ATCACG Index sequence 

The ASCII value for every character at the fourth line minus 33 will be the 
corresponding sequencing base quality value at the second line. If the sequencing 
error rate is recorded by "e" and the base quality for Illumina platform is expressed as 
Qphred, the equation No.1 as below will be obtained:  

Equation 1: Qphred = -10log10(e) 
The relationship between sequencing error rate (e) and sequencing base quality value 
(Qphred) is listed as below (Table 4.2):  

Table 3.1.2 Sequencing error rate and corresponding base quality value 
Sequencing error rate Sequencing quality value Corresponding character 

5% 13 . 

1% 20 5 

0.1% 30 ? 

0.01% 40 I 

3.2 Quality Control 
3.2.1 Sequencing Error Rate Examination 
For Illumina SBS technology, the distribution of sequencing error rate has two 
features: 
(1) Error rate grows with sequenced reads extension because of the consumption of
sequencing reagent. The phenomenon is common in the Illumina high-throughput
sequencing platform (Erlich et al., 2008; Jiang et al., 2011).
(2) The reason for the high error rate of the first six bases is that the random
hex-primers and RNA template bind incompletely in the process of cDNA synthesis
(Jiang et al., 2011).
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Figure 3.2.1 Sequencing error rate distribution 
The x-axis represents position in reads, and the y-axis represents the average error rate of bases of all reads at a 

position. 

3.2.2 Sequencing Data Filtration 
Raw sequencing data may contain adapter contaminated and low-quality reads. These 
sequence artifacts may increase the complexity of downstream analyses, which means 
that quality control is an essential step. All the downstream analyses will be based on 
clean reads that pass quality control. 

We performed quality control according to the following procedure: 
(1) Discard a read pair if either one read contains adapter contamination;
(2) Discard a read pair if more than 10% of bases are uncertain in either one read;
(3) Discard a read pair if the proportion of low quality bases is over 50% in either one
read.

RNA-seq Adapter sequences (Oligonucleotide sequences of adapters from 
TruSeqTM RNA and DNA Sample Prep Kits): 
5’ Adapter:  
5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCG
ATCT-3’ 
3’ Adapter:  
5’-GATCGGAAGAGCACACGTCTGAACTCCAGTCAC(6-indexs)ATCTCGTATGC
CGTCTTCTGCTTG-3’ 
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Figure 3.2.2 Raw data filtration result 
Note: Reads were discarded in pairs. 

(1) Containing N: the number of read pairs with either one read containing uncertain nucleotides more than 10%, and the

proportion in raw data. 

(2) Low Quality: the number of read pairs with either one read containing low quality (below 5) nucleotides more than 50 percent,

and the proportion in raw data. 

(3) Adapter related: the number of read pairs filtered out with adapter contamination, and the proportion of filtered read pairs in

raw data. 

(4) Clean reads: the number of read pairs passed quality control and the proportion in raw data. 

3.2.3 Statistics of Sequencing Quality 
According to the sequencing feature of Illumina platforms, for paired-end sequencing 
data we require that Q30 (the percent of bases with phred-scaled quality scores greater 
than 30) should be above 80%. 

Table 3.2.3 Overview of data quality 
Sample 

name 
Raw reads Clean reads 

Clean 

bases(G) 

Error 

rate(%) 
Q20(%) Q30(%) 

GC 

content(%) 

Control_1 128375922 122490956 18.37 0.03 97.98 93.76 44.73 

Control_2 128375922 122490956 18.37 0.03 96.94 91.33 45.06 

Sample_1 113299497 107615455 16.14 0.03 97.83 93.29 47.06 

Sample_2 113299497 107615455 16.14 0.03 96.75 91.01 47.06 

The details of the table are described below: 

(1) Sample name: For PE sequencing, * _1 and * _2 indicate reads on the left and right end, respectively;

(2) Raw reads: Statistics of raw reads, each adjacent four lines contains the information of one read, and the total read number of

each file is calculated; 

(3) Clean reads(G): Same as raw reads, except that only the filtered reads, which all subsequent analysis is based on, is
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calculated; 

(4) Clean bases: The product of number and length of sequences, calculated as Giga bases; 

(5) Error rate: The error rate of sequencing, calculated based on Equation 1;

(6) Q20, Q30: The percentage of total number of bases where the Phred score is greater than 20 and 30, respectively; 

(7) GC content: The percentage of G and C in all bases; 

3.3 Mapping to a Reference Genome 
The cleaned reads are aligned to the reference genome with Tophat2 (Kim et al., 2013) and the 
algorithm of Tophat2 mainly includes three parts: 
(1) Map the reads against transcriptome (optional);
(2) Map the full-length reads to the exons;
(3) Map the partial reads to two exons;

The algorithm of TopHat2 is described below (Kim et al., 2013): 

When the reference genome is appropriate and the experiment is contamination-free, 
the TMR (Total Mapped Reads or Fragments) should be larger than 70% and MMR 
(Multiple Mapped Reads or Fragments) should be no more than 10%. 
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3.3.1 Statistics of Mapped Reads 

Table 3.3.1 Statistics of reads mapped to reference genome 

Sample name Control Sample 

Total reads 103413896 95671374 

Total mapped 87319755 (84.44%) 80291861 (83.92%) 

Multiple mapped 4739091 (4.58%) 3933783 (4.11%) 

Uniquely mapped 82580664 (79.85%) 76358078 (79.81%) 

Read-1 41400161 (40.03%) 38289381 (40.02%) 

Read-2 41180503 (39.82%) 38068697 (39.79%) 

Reads map to '+' 41274699 (39.91%) 38168756 (39.9%) 

Reads map to '-' 41305965 (39.94%) 38189322 (39.92%) 

Non-splice reads 64293027 (62.17%) 60583242 (63.32%) 

Splice reads 18287637 (17.68%) 15774836 (16.49%) 

The details of the mapping results are described below: 

(1) Total reads: Number of reads after data filtering (clean data); 

(2) Total mapped: Number of reads that can be mapped to the genome. Generally, if there is proper reference genome and no

contamination during the experimental procedure, the percentage will be higher than 70%; 

(3) Multiple mapped: Number of sequences that are mapped to multiple positions in the reference sequences. the percentage of

this part of the data is generally less than 10%; 

(4) Uniquely mapped: Number of reads that are mapped to the unique position in the reference sequences; 

(5) Reads map to '+', Reads map to '-': Number of reads that are mapped to the plus or minus strand, respectively. 

(6) Splice reads: Number of reads that are mapped to two exons (also known as the junction reads). Similarly, non-splice reads

are those that the full-length reads are mapped to one exon. The percentage of splice reads depends on the length of reads. 

3.3.2 Distribution of Reads On Chromosomes 
To obtain an overview of the distribution of mapped reads on each chromosome, the 
"window size" is set to 1K, the median number of reads mapped to the genome inside 
the window is calculated, and transformed to the log2value. In general, the longer the 
whole chromosome, the more total number of mapped reads within it would be 
(Marquez et al., 2012). 
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Figure 3.3.2 Distribution of reads on chromosomes 
The horizontal axis represents the length of chromosome (Mb), and the vertical axis represents log2(median of read density). 

Green and red bars represent the plus and minus strands, respectively. 

3.3.3 Distribution of Known types of Genes 
The coverage of different known gene types in this specie is analysed using the union 
model by HTSeq. According to the expression quantity, the expressed distribution of 
various types of genes in sample were made counts and shown in table 3.3.3： 

Table 3.3.3 The distribution list of the known types of genes 

Sample_name Sample Control 

mRNA 48722201 (67.41%) 38998933 (58.78%) 

misc_RNA 994223 (1.38%) 1074817 (1.62%) 

ncRNA 11323217 (15.67%) 11267598 (16.98%) 

pseudogene 6464 (0.01%) 8613 (0.01%) 

rRNA 16106 (0.02%) 48237 (0.07%) 

tRNA 202928 (0.28%) 308863 (0.47%) 

Others 11012912 (15.24%) 14635991 (22.06%) 

The table above is pictured shown below：  
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Figure 3.3.3 Distribution of reads in different kinds of genes 

3.3.4 Visualization of Aligned Data 
Files are provided in BAM format, a standard file format that contains mapping 
results, and the corresponding reference genome and gene annotation file for some 
species. The Integrative Genomics Viewer (IGV) is recommended for visualizing data 
from BAM files. The IGV has several features: (1) it displays the positions of single 
or multiple reads in the reference genome, as well as read distribution between 
annotated exons, introns or intergenic regions, both in adjustable scale; (2) displays 
the read abundance of different regions to demonstrate their expression levels, in 
adjustable scale; (3) provides annotation information for both genes and splicing 
isoforms; (4) provides other related annotation information; (5) displays annotations 
downloaded from remote servers and/or imported from local machines. 
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Figure 3.3.4 The interface of the IGV browser 

3.4 RNA-Seq Quality Assignment 
FPKM (expected number of Fragments Per Kilobase of transcript sequence per 
Millions base pairs sequenced), which considers both the sequencing depth and the 
gene length, is the most commonly used method for gene expression profiling 
(Trapnell Cole, et al., 2010), so that the calculated expression levels can be used 
directly to compare differences in gene expression between samples. 

3.4.1 Comparative Analysis of Gene Expression Level 
Boxplot and density plot of the FPKMs of all transcripts are used to compare the their 
expression under different experiments. For samples with replicates, the mean of 
FPKMs from all replicates is used. 
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Figure 3.4.1 Comparison of gene expression under different expressions 
Note: 

(1) boxplot of FPKM values. X an y axis represent the respective sample name and the value of log10(FPKM+1). For each

sample, the plot region represents the statistics of maximum, upper quartile, median, lower quartile and minimum, respectively 

from top to bottom. 

(2) FPKM density distribution. X and y axis represent the value of log10(FPKM+1) and the density of genes, respectively. 

3.4.2 Correlation Analysis among Samples 
Biological replicates are necessary for any biological experiment, including those 
involving RNA-seq technology (Hansen et al., 2012). Biological replicates in 
RNA-seq can demonstrate whether the experiment is repeatable. If biological 
replicates are unavailable, it will be impossible to estimate the level of biological 
variability in expression for each gene in a study. 
The correlation between samples is an important indicator for testing the reliability of 
the experiment. The closer the correlation coefficient is to 1, the greater the similarity 
of the samples. ENCODE suggests that the square of the Pearson correlation 
coefficient should be larger than 0.92, under ideal experimental conditions. In this 
project, the R2 should be larger that 0.8. 
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Figure 3.4.2 RNA-Seq correlation 
Heat maps of the correlation coefficient between samples are also shown. R2, the square of the Pearson coefficient correlation 

coefficient between samples; 

3.5 Transcripts Assembly 
The Cufflinks software (Trapnell et al., 2010), which uses statistical model, can 
simultaneously assemble and quantify the expression of isoforms and keep isoform 
set as small as possible. It can report the maximum likelihood estimate of expression 
data and use accurate strand information by passing options specific to 
strand-specific library. The workflow and results of cufflinks assembly are shown 
below: 
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Figure 3.5.1 RNA-Seq correlation 

Table 3.5.1 Results of cufflinks assembly (partial) 
Seqname Source Feature Start End Score Strand Frame Attributes 

GL000191.1 Cufflinks transcript 3583 3717 1000 + .

gene_id	  "CUFF.1";	  transcript_id	  "CUFF.1.1";	  FPKM	  

"6.1941392125";	  frac	  "0.400000";	  conf_lo "0.000000";	  

conf_hi	  "0.813112";	  cov	  "101.570893";

GL000191.1 Cufflinks exon 3583 3717 1000 + .

gene_id	  "CUFF.1";	  transcript_id	  "CUFF.1.1";	  

exon_number	  "1";	  FPKM	  "6.1941392125";	  frac 

"0.400000";	  conf_lo	  "0.000000";	  conf_hi	  "0.813112";	  

cov	  "101.570893"; 

GL000191.1 Cufflinks transcript 3622 3903 1000 - .

gene_id	  "CUFF.2";	  transcript_id	  "CUFF.2.1";	  FPKM	  

"0.1756257804";	  frac	  "0.600000";	  conf_lo "0.000000";	  

conf_hi	  "0.585419";	  cov	  "2.879894"; 

GL000191.1 Cufflinks exon 3622 3903 1000 - .

gene_id	  "CUFF.2";	  transcript_id	  "CUFF.2.1";	  

exon_number	  "1";	  FPKM	  "0.1756257804";	  frac 

"0.600000";	  conf_lo	  "0.000000";	  conf_hi	  "0.585419";	  

cov	  "2.879894"; 

GL000191.1 Cufflinks transcript 9604 9764 1000 - .

gene_id	  "CUFF.3";	  transcript_id	  "CUFF.3.1";	  FPKM	  

"1.4539361301";	  frac	  "1.000000";	  conf_lo "0.000000";	  

conf_hi	  "0.530291";	  cov	  "23.841503"; 

Note: 

(1) Seqname: the name of chromosome or scaffold; 

(2) Source: data source, it is "Cufflinks";

(3) Feature: sequence type description, it is "transcript" or "exon";

(4) Start: transcript start position; 

(5) End: transcript end position; 

(6) Score: score of the assembly;

(7) Strand: transcript strand;

(8) Frame: type of transcript start position, cufflinks does not predict start/end codon, thus it is "."; 

(9) Attributes: other descriptions of the sequence, such as gene ID, transcript ID and its quantification;

3.6 Identification of Candidate Long Noncoding RNAs 
LncRNA is non-coding transcripts that are longer than 200-nt. Based on their 
genomic positions, they can be classified to intergenic lncRNAs (lincRNAs), intronic 
lncRNAs, anti-sense lncRNAs, sense lncRNAs, bidirectional lncRNAs and so on, 
where lincRNAs account for the largest proportion. While focus on the first three 
types of lncRNAs, the pipeline with a set of strict filters, as shown below, is used to 
predict candidate lncRNAs based on their structures and non-coding features. 
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Figure 3.6 Flowchart of lncRNA filtering 

3.6.1 Basic filtering 
There are five steps for basic filtering: 
Step 1: Merge all assembled transcripts by cuffcompare and select transcripts exist in 
at least two samples; 
Step 2: Select transcripts that are longer than 200 bp and have more than 2 exons; 
Step 3: Calculate the coverage of each transcript by cufflinks and select transcripts 
whose coverage ≥ 3; 
Step 4: Compare with known non-lncRNA and non-mRNA transcripts (rRNA, tRNA, 
snRNA, snoRNA, pre-miRNA, pseudogenes etc.), and filter out the transcripts 
identical or similar to these ones; 
Step 5: Compare with known mRNAs according to the class code of cuffcompare 
result (http://cufflinks.cbcb.umd.edu/manual.html#class_codes) to get candidate 
lincRNAs, intronic lncRNAs and anti-sense lncRNAs. 

The bar plot below shows the number of transcripts that were filtered out in each step. 
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Figure 3.6.1.1 Statistics of lncRNA filtering 
Horizontal axis represents the filtering step, and vertical axis represents the number of filtered transcripts in that step. 

Table 3.6.1.1 Description of class_code 
class_code meaning 

= Complete match of intron chain 

c Contained 

j Potentially novel isoform (fragment): at least one splice junction is shared with a reference transcript 

e Single exon transfrag overlapping a reference exon and at least 10 bp of a reference intron, indicating 

a possible pre-mRNA fragment. 

i A transfrag falling entirely within a reference intron 

o Generic exonic overlap with a reference transcript 

p Possible polymerase run-on fragment (within 2Kbases of a reference transcript) 

r Repeat. Currently determined by looking at the soft-masked reference sequence and applied to 

transcripts where at least 50% of the bases are lower case 

u Unknown, intergenic transcript 

x Exonic overlap with reference on the opposite strand 

s An intron of the transfrag overlaps a reference intron on the opposite strand (likely due to read 

mapping errors) 

. (.tracking file only, indicates multiple classifications) 
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Figure 3.6.1.2 Filtering of lncRNAs based on class_code 
Horizontal and vertical axes represent the type of class_code and the number of transcripts, respectively. The class_code "u", "i" 

and "x" stand for lincRNA, intronic lncRNA and anti-sense lncRNA, respectively. 

3.6.2 Coding Potential Filtering 
Coding potential is essential to determine if a transcript is a lncRNA, and several 
popular softwares for coding potential analysis are adopted for coding potential 
filtering, including CPC, CNCI, Pfam Analysis and PhyloCSF analysis (limited to 
mammalian only), and the predicted lncRNAs come from the intersection of these 
methods. 

3.6.2.1 CPC Analysis 
CPC (Coding Potential Calculator) can calculate coding potential by blastx search 
against the protein database (The NCBI nr database is used here). Based on the 
sequence features of the coding frame, the coding potential of the transcript is 
assessed by support vector machine, and the results are given below. 

Table 3.6.2.1 Summary of CPC analysis (partial) 
Transcript id Transcript length Type Score 

TCONS_00000082 363 coding 1.65903 

TCONS_00000117 1901 noncoding -5.25003

TCONS_00000144 1631 coding 3.30387 

TCONS_00000377 489 noncoding -1.02156

TCONS_00000435 1928 noncoding -5.06304

TCONS_00000556 981 coding 0.637386 

Note: 

(1) Transcript id: transcript ID;

(2) Transcript length: Transcript length;

(3) Type: transcript type, either "noncoding" or "coding"; 
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(4) Score: coding potential score. The transcript type is "noncoding" if the score < 0; 

3.6.2.2 CNCI Analysis 
CNCI (Coding-Non-Coding Index) can distinguish protein-coding and non-coding 
transcripts from transcript assembly, which is independent of known annotations and 
can predict the potential of coding or non-coding based on the features of nucleotide 
triplets (Sun et al., 2013). The results of CNCI are shown below: 

Table 3.6.2.2 Summary of CNCI analysis (partial) 

Note: 

(1) Transcript id: transcript ID

(2) Max score: max score of coding potential 

(3) Start: ORF start position

(4) End: ORF end position

(5) Protein: protein sequence

3.6.2.3 Pfam Analysis 
Pfamscan (Mistry et al., 2007) is used to search protein domains in the pfam HMM 
database (Bateman et al., 2002) to eliminate sequences matched to known protein 
domains, and both Pfam-A and Pfam-B databases are used. Pfam-A contains most 
high quality known protein domains that are manually selected, while Pfam-B covers 
more domains, which is complementary to Pfam-A. The translated protein sequences 
are searched against the Pfam-A and Pfam-B databases by hmmscan, and the matched 
sequences are considered to have coding potential, whereas others are most likely to 
be non-coding transcripts. 

Table 3.6.2.3 Summary of Pfam analysis (partial) 
Seq id Hmm acc Hmm name Type Hmm 

start 

Hmm 

end 

Hmm 

length 

Bit 

score 

E-value

TCONS_00000082-1 PB003422 Pfam-B_3422 Pfam-B 991 1054 1054 40.8 9.20E-11 

TCONS_00000117-0 PB008900 Pfam-B_8900 Pfam-B 27 68 131 50.4 2.80E-13 

TCONS_00000117-1 PF13900.1 GVQW Domain 1 48 48 103.1 5.30E-30 

TCONS_00000435-0 PF13900.1 GVQW Domain 1 48 48 101.9 1.30E-29 

TCONS_00000435-1 PB008900 Pfam-B_8900 Pfam-B 33 64 131 31.6 1.80E-07 

TCONS_00000435-1 PB000655 Pfam-B_655 Pfam-B 72 175 319 61.3 1.30E-16 

Note: 

Transcript id Type Score Start End 

TCONS_00000082 coding 0.008101845 24 210 

TCONS_00000117 noncoding -0.208177216 1482 1746 

TCONS_00000144 coding 0.193568756 375 1374 

TCONS_00000377 noncoding -0.002518776 60 90 

TCONS_00000435 noncoding -0.233758796 0 189 

TCONS_00000556 noncoding -0.174564258 81 141 
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(1) Seq id: transcript ID+[0,1,2], transcripts not in the list are "noncoding"

(2) Hmm acc: pfam domain ID

(3) Hmm name: pfam domain name

(4) Type: pfam domain type

(5) Hmm start: start position of pfam domain

(6) Hmm end: end position of pfam domain

(7) Hmm length: length of pfam domain

(8) Bit score: alignment score

(9) E-value: E-value of the alignment, the criteria is: E-value 0.001

3.6.2.4 PhyloCSF Analysis 
PhyloCSF (phylogenetic codon substitution frequency) is a tool that calculate the 
coding potential of transcripts by using genome-wide sequence alignment of multiple 
organisms. Two main arguments of PhyloCSF are phylogenetic tree and codon matrix 
(Lin et al., 2011). Based on the genome-wide sequence alignment of multiple 
organisms, the Codon Substitution Frequency (CSF) is calculated (CSF refers to the 
frequency of codon substitution in multiple sequence alignment, and the codon 
substitution ratio of coding and non-coding regions can be used to effectively 
distinguish coding and non-coding sequences), and the coding potential of the 
transcripts is scored by combining the distance information from phylogenetic tree of 
organisms. According to previous studies, different species are found to have different 
PhyloCSF threshold. Therefore, some known lncRNAs and mRNAs are sampled to 
calculate the threshold. Since the screening model is designed for mammals, this tool 
is limited to mammals only. 

Table 3.6.2.4 Summary of phyloCSF analysis (partial) 
Transcript id Max 

score 

Start End Protein 

TCONS_00000082 7.1440 1835 1912 MQQNCVSGLVPVCQLNSSGCSLSDDG 

TCONS_00003321 97.1766 1077 1295 MYNADSISAQSKLKEAEKQEEKQIGKSVKQEDRQTPCSPD

STANVRIEEKHVRRSSVKKIEKMKEKVCRLPQL 

TCONS_00005703 34.5244 342 599 MYSRSQASPSCGGGGGQGGLPRGLGWASLGGVFCEFAAK

GLGWVWGGPGVGLGSVLVSKASLTFASQITGAFPLDNSAL

RPTGSGF 

TCONS_00001396 43.6306 390 725 MGCPGAGTGNPWDQPRLSLPFLAGVELALLHRSPAKGRK

MASGGLGLVLKAFCPQGVAGAPVLPQQEAIWGQQCPLGA

GASGPGV EEFGKCWNGCLVCPCSFSVTLLPTNSS 

TCONS_00004972 61.0833 86066 86257 MDLLVLSQGHQTNTLDIIHIHKEALTKVMESRQHVAEGKT

QVQKKVQRLMTSESQEQDFFGHFG 

Note: 

(1) Transcript id: transcript ID

(2) Max score: max score of coding potential 

(3) Start: ORF start position
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(4) End: ORF end position

(5) Protein: protein sequence

3.6.2.5 Venn Diagram of Coding Potential Analysis 
The noncoding transcripts identified by CPC, CNCI, Pfam and PhyloCSF were 
summarized and shown as a venn diagram below, and the intersection of these results 
is considered to be the final lncRNA data set for further analysis.  

Figure 3.6.2.5 Venn diagram of results from four tools mentioned above 
Number in each circle and overlap represent the respective total and shared number of noncoding transcripts predicted by the 

software. 

3.7 lncRNA Expression Analysis 
The expression of the filtered lncRNAs was analyzed by cuffdiff 
(http://cufflinks.cbcb.umd.edu/manual.html#cuffdiff), and the results are shown 
below:  

Table 3.7 FPKM of lncRNA in each sample (partial) 
transcript_id Sample Control 

TCONS_00004163 0.64279 0.639313 

TCONS_00072426 0.594465 1.58591 

TCONS_00002202 0.593291 0.474413 

TCONS_00046915 1.83413 1.90649 

TCONS_00050940 1.00281 1.64808 

TCONS_00098287 0.518418 0.131542 

3.8 lncRNA Target Prediction 
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As lncRNAs function mainly in cis or trans manner on their protein-coding target genes, 
lncRNA target prediction consists the following two sections. 

cis-acting target prediction 
The cis-acting target prediction assumes that the function of lncRNA is related to adjacent 
protein coding genes. Therefore, coding genes that are 100 kb upstream or downstream of 
lncRNA are considered to be target genes. 

Table 3.8.1 cis-acting target gene prediction results 
lncRNA_geneid mRNA_geneid 

XLOC_000150 55160 

XLOC_000223 51538 

XLOC_000223 2170 

XLOC_000223 347735 

XLOC_000795 127018 

XLOC_000828 5664 

Note: 

(1) lncRNA_geneid: lncRNA gene ID

(2) mRNA_geneid: cis-acting target gene of this lncRNA

3.9 Functional Enrichment Analysis of lncRNA Target Genes 
The GO enrichment analysis for cis-acting and trans-acting target genes were 
conducted, and only the cis-acting target genes are shown in the report. 

3.9.1 GO Enrichment of LncRNA Target Genes 
Gene Ontology (GO, http://www.geneontology.org/), as the standard classification 
system of gene function, can elucidate the functions of lncRNA targets that are 
differentially expressed. The GOseq R package (Young et al, 2010), which is based on 
Wallenius non-central hyper-geometric distribution, is used for gene ontology analysis. 
The Wallenius distribution, compared to hyper-geometric distribution, has the feature 
that the probability of sampling from a population is different from sampling from 
another one by assessing the bias of gene length, which can calculate the probability 
of GO term enrichment more accurately. 

3.9.1.1 GO Enrichment of LncRNA Target Genes 
The results of GO enrichment of lncRNA target genes are shown below: 

Table 3.9.1.1 GO enrichment of lncRNA target genes 
GO_accession Description Term_type Over_represented_pValue padj fg bg 

GO:0004827 proline-tRNA ligase 

activity 

molecular_function 0.0022518 1 1 6 

GO:0006433 prolyl-tRNA biological_process 0.0022518 1 1 6 
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aminoacylation 

GO:0004000 adenosine deaminase 

activity 

molecular_function 0.003709 1 1 6 

GO:0000103 sulfate assimilation biological_process 0.0061562 1 1 6 

GO:0004020 adenylylsulfate kinase 

activity 

molecular_function 0.0061562 1 1 6 

GO:0019239 deaminase activity molecular_function 0.0064888 1 1 6 

Note: 

(1) GO_accession: the unique id in Gene Ontology database 

(2) Description: function description in gene ontology

(3) Term_type: type of the GO term (one of cellular_component, biological_process or molecular_function) 

(4) Over_represented_pValue: statistical significance on enrichment 

(5) padj: adjusted p-value. Normally, padj < 0.05 means the gene is enriched in that term

(6) fg: the number of lncRNA target genes related to the GO term

(7) bg: the number of lncRNA target genes that have GO annotation.

3.9.1.2 DAG of GO-enriched LncRNA Target Genes 
The Directed Acyclic Graph (DAG) is used to visualize the GO enrichment, where 
branches represent inclusion of the two GO terms, and the scope of the term 
definitions becomes smaller and smaller from top to bottom. Normally, the top 10 
results from GO enrichment are selected as main nodes in directed acyclic graph, 
where the associated terms are also represented and the depth of colors indicates 
enrichment level. DAGs for biological process, molecular function and cellular 
component are shown respectively.  
The DAGs of GO enrichment of lncRNA target genes are shown below:  

Figure 3.9.1.2 DAGs of GO enrichment of lncRNA target genes 
Node represents GO term, and box represents the top 10 terms of GO enrichment. Deeper color indicates higher enrichment and 

vice versa. The GO term and the padj value of enrichment are shown in each node. 
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3.9.1.3 Bar plot of GO-enriched LncRNA Target Genes 
The top 30 enriched GO terms in biological process, cellular component and 
molecular function are shown in the bar plot below. If there are less than 30 GO terms, 
all of them are shown in the plot.  

Figure 3.9.1.3 Bar plot of GO enrichment of lncRNA target genes 
Node represents GO term, and box represents the top 10 terms of GO enrichment. Deeper color indicates higher enrichment and 

vice versa. The GO term and the padj value of enrichment are shown in each node. 

3.9.1.4 Clustering of GO-enriched lncRNA Target Genes 
Clustering of genes based on GO term enrichment is essential for studying the 
differences of lncRNA target gene expression among samples, where it is easy to find 
important genes that are differentially expressed. The vertical clustering is useful to 
determine correlation of samples based on gene expression levels, while the 
horizontal clustering is useful for finding some classes that have similar function and 
expression. In this analysis, the differences of gene expression from the top 30 
significant GO terms are shown in the result. If the number is less than 30, all of them 
are used.  
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Figure 3.9.1.4 Clustering of enriched GO terms 
The union of all terms on level 3 are used for clustering, and the expression level of all genes in each term is calculated. Terms in 

red and green colors represent high and low expression of genes in the corresponding terms, respectively, and the number in 

parenthesis after the term indicates the number of corresponding lncRNA target genes. 

3.9.2 KEGG Enrichment of LncRNA Target Genes 
The KEGG enrichment analysis for cis-acting and trans-acting target genes were 
conducted, and only the cis-acting target genes are shown in the report. 

3.9.2.1 KEGG Enrichment of LncRNA Target Genes 
The interactions of multiple genes may be involved in certain biological functions. 
KEGG (Kyoto Encyclopedia of Genes and Genomes) is a collection of manually 
curated databases dealing with genomes, biological pathways, diseases, drugs, and 
chemical substances. KEGG is utilized for bioinformatics research and education, 
including data analysis in genomics, metagenomics, metabolomics and other omics 
studies. Pathway enrichment analysis identifies significantly enriched metabolic 
pathways or signal transduction pathways associated with differentially expressed 
genes compared with the whole genome background. The formula is: 
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Here, N is the number of all genes with a KEGG annotation, n is the number of 
lncRNA target genes in N, M is the number of all genes annotated to specific 
pathways, and m is number of lncRNA target genes in M. 

List of enriched KEGG terms: 

Table 3.9.2.1 KEGG enrichment of lncRNA target genes 
#Term Id fg bg P-Value padj 

Metabolism of xenobiotics by cytochrome P450 hsa00980 24 74 0.000823954 0.136732588 

Steroid hormone biosynthesis hsa00140 20 57 0.000994419 0.136732588 

Transcriptional misregulation in cancer hsa05202 43 179 0.002238153 0.205164005 

Drug metabolism - cytochrome P450 hsa00982 20 68 0.005389137 0.274839746 

Ascorbate and aldarate metabolism hsa00053 11 27 0.005467068 0.274839746 

Retinol metabolism hsa00830 19 64 0.006060405 0.274839746 

Note: 

(1) #Term: Description of the KEGG pathway

(2) Id: unique pathway ID in the KEGG database

(3) fg: number of lncRNA target genes in the pathway

(4) bg: number of genes in the pathway

(5) P-value: statistical significance of the enrichment

(6) padj: adjusted p-value. Normally, padj < 0.05 means the term is enriched

3.9.2.2 Scatter Plot of KEGG Enrichment of LncRNA Target Genes 
Scatter diagram is a graphical display way of KEGG enrichment analysis results. In 
this plot, enrichment degree of KEGG can be measured through Rich factor, Qvalue 
and genes counts enriched to this pathway. Rich factor is the ratio of lncRNA target 
genes counts to this pathway in the annotated genes counts. The more the Rich factor 
is, the higher is the degree of enrichment. Qvalue is the adjusted p-value after multiple 
hypothesis testing, and its range is [0,1]. The more the qvalue is close to zero, the 
more significant is the enrichment. Top 20 most significant enriched pathways are 
chosen in KEGG scatter plot, and if the enriched pathways counts is less than 20, then 
put all of them into the plot. KEGG enrichment scatter diagram is as follows. 
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Figure 3.9.2.2 Scatter plot of enriched KEGG pathways of lncRNA target genes 
Vertical coordinates represent pathway name, and horizontal coordinates represent Rich factor. The size and color of point 

represent the number of lnRNA target genes in the pathway and the range of different Q value, respectively. 

3.9.2.3 Enriched KEGG Pathway of LncRNA Target Genes 
The results of Enriched KEGG pathway of lncRNA target genes are shown below. For 
convenience of viewing the distribution of lncRNA target genes in pathways, those genes 
were added to the figures, and they can be viewed as described below: open the folder 
results/mRNA_Enrichment/KEGGEnrichment, where each html file contains different 
comparison of samples. Open one file and the pathways can be viewed by clicking on it. 
The KO node with red box indicates differential lncRNA target genes, and the mouse 
hovering on the KO node will popup the details of differential genes. All the operations 
described above can be done offline, and if the network connection is available, clicking 
on each node will open the associated webpage of KO node from the official KEGG 
database. 
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Figure 3.9.2.3 Enriched KEGG pathways of lncRNA target genes 

3.9.2.4 Clustering of KEGG-enriched lncRNA Target Genes 
Clustering based on the enriched KEGG pathway is essential for studying the differences 
of lncRNA target gene expression among samples, where it is easy to find some important 
differential expression in some pathways. The vertical clustering is useful to determine 
correlation of samples based on gene expression levels, while the horizontal clustering is 
useful for finding some classes that have similar function and expression. In this analysis, 
the differences of gene expression from the top 30 significant KO terms are shown in the 
result. If there are less than 30 significant KO terms, all of them are used. 
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Figure 3.9.2.4 Clustering of KEGG enrichment 
The union of all pathways are used for clustering, and the expression level of all genes in each pathway is calculated. Pathways 

in red and green colors represent high and low expression of genes in the corresponding pathways, respectively, and the number 

in parenthesis after the pathway indicates the number of corresponding lncRNA target genes. 

3.10 lncRNA conservation analysis 
3.10.1 Sequence conservation analysis 
Sequence conservation of lncRNA is generally lower than that of mRNA, and the phyloP 
(http://compgen.bscb.cornell.edu/phast/) is used to score the conservation of mRNA and 
lncRNA. The cumulative distribution of conservation scores is shown below: 

Figure 3.10.1 Cumulative distribution of conservation scores of lncRNA and mRNA 

3.10.2 Site conservation analysis 
Site conservation of lncRNA sequences exists among various species, and the 
positions of lncRNA in different species can be visualized by the UCSC browser.The 
site conservation of lncRNA is given below: 
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Figure 3.10.2 Conservation of lncRNAs among species 

3.11 Alternative splicing (AS) analysis 
The ASprofile (Florea et al., 2013) is used to classify and quantify the AS events 
predicted by cufflinks (Trapnell et al., 2010). The workflow of ASprofile are shown 
below:  

The 12 classes alternative splicing events are described below: 

(1) TSS: Alternative 5' first exon (transcription start site)

(2) TTS: Alternative 3' last exon (transcription terminal site)

(3) SKIP: Skipped exon (SKIP_ON,SKIP_OFF pair)

(4) XSKIP: Approximate SKIP (XSKIP_ON,XSKIP_OFF pair)

(5) MSKIP: Multi-exon SKIP (MSKIP_ON,MSKIP_OFF pair)

(6) XMSKIP: Approximate MSKIP (XMSKIP_ON,XMSKIP_OFF pair)

(7) IR: Intron retention (IR_ON, IR_OFF pair)

(8) XIR: Approximate IR (XIR_ON, XIR_OFF pair)

(9) MIR: Multi-IR (MIR_ON, MIR_OFF pair)
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(10) XMIR: Approximate MIR (XMIR_ON, XMIR_OFF pair)

(11) AE: Alternative exon ends (5', 3', or both) 

(12) XAE: Approximate AE

3.11.1 Classification and quantification of AS events 

Figure 3.11.1 Classification and quantification of AS events 
The vertical axis represents the abbreviations of the AS event, and horizontal axis represents the number of the AS event. 

Different samples are distinguished by different sub-figures and colors. 

3.11.2 Statistics of types and expression of AS events 

Table 3.11.2 Types and expression of AS events 
event_id event_type gene_id chrom event_start event_end event_pattern strand fpkm ref_id 

1000001 TSS 100127946 chr11 69830650 69830710 69830710 + 0 XM_001717040.2 

1000002 TTS 100127946 chr11 69866516 69866574 69866516 + 0 XM_001717040.2 

1000003 TSS 100129216 chr11 71589499 71589556 71589556 + 0 NM_001242853.1 

1000004 TTS 100129216 chr11 71595453 71595607 71595453 + 0 NM_001242853.1 

Note: 

(1) event_id: AS event ID

(2) event_type: type of AS event (TSS, TTS, SKIP_{ON,OFF}, XSKIP_{ON,OFF}, MSKIP_{ON,OFF}, XMSKIP_{ON,OFF},

IR_{ON, OFF}, XIR_{ON,OFF}, AE, XAE) 

(3) gene_id: gene ID from the cufflinks assembly

(4) chrom: chromosome ID

(5) event_start: start position of AS event

(6) event_end: end position of AS event 

(7) event_signature: characteristics of AS event (for TSS, TTS - inside boundary of alternative marginal exon; for *SKIP_ON,the 

coordinates of the skipped exon(s); for *SKIP_OFF, the coordinates of the enclosing introns; for *IR_ON, the end coordinates of 
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the long, intron-containing exon; for *IR_OFF, the listing of coordinates of all the exons along the path containing the retained 

intron; for *AE, the coordinates of the exon variant) 

(8) strand: strand of gene

(9) fpkm: gene expression level of the AS event 

(10) ref_id: gene ID in the reference sequence file

3.12 SNP and InDel analysis 
Single Nucleotide Polymorphisms (SNP) is a type of genetic maker that refers to the single 
nucleotide variation in the genome. There are plenty of SNPs with rich polymorphisms. 
Theoretically, each SNP site has four types of variation, but in fact there are only two types, 
namely transformation and transversion, the ratio of which is 1:2. SNPs occur most 
frequently in the CG sequences, and more often C is converted to T, because C is often 
methylated in CG, and it will change to T after spontaneously deamination. Normally SNP 
refers to the single nucleotide variation where the frequency of variation is greater than 1%. 
InDel (insertion and deletion) refers to the insertion and deletion of small fragments, which 
is relative to the reference genome, and it may contain one or more bases. 

The samtools and picard-tools are used to analyze the mapping results, such as sorting the 
chromosome and removing duplicate reads, and SNP calling and InDel calling is done by 
GATK2 (A McKenna, 2010). The table shown below are results after filtering, where the 
columns in the InDel result are the same as those in the SNP result. 

Table 3.12.1 SNP results 
#CHROM POS REF ALT GeneID Control Sample 

chr1 14653 C T 10246 6,58 16,60 

chr1 14677 G A 100302652 51,45 63,49 

chr1 14907 A G 10551 7,9 9,4 

chr1 14930 A G 100528064 0,11 7,7 

Note: 

(1) #CHROM: Chromosome/Scaffold ID of SNPs.

(2) POS: Position of SNPs on corresponding chromosome/scaffold.

(3) REF: Reference genotype.

(4) ALT: SNP genotype (Alternative genotype). 

(5) Gene_id: Gene ID from reference GTF file. 

(6) other coloums: genotype of each sample at this site (the number represents the reads number supporting the site. In detail, the

number before and after comma represents the reads number supporting REF and ALT, respectively.) 

3.13 mRNA expression analysis 
3.13.1 Quantification of mRNA expression 
The expression of mRNAs and lncRNAs is assessed by cuffdiff 
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(http://cufflinks.cbcb.umd.edu/manual.html#cuffdiff), and the results are shown 
below:  

Table 3.13.1 FPKMs of mRNA from each sample 
transcript_id ST_2 ST_3 SN_2 SN_3 

ENST00000618881 0 0 0 0 

ENST00000618882 0 1.1894 0 0 

ENST00000618887 0 0 2.75718 1.08655 

ENST00000496116 1.83384 1.76824 1.36016 0.987781 

ENST00000496117 1.25275 0 0 0 

3.13.2 Differential expression of mRNAs 
Statistically, differential expression analysis of lncRNAs and mRNAs has no bias on 
molecular type. If the sample has biological replicates, the differential expression is 
analyzed by cuffdiff, and edgeR is used otherwise.  

Table 13.2 Results of differential expression analysis 
Gene Id ST_2 SN_2 log2FoldChange pval p-adjusted

ENST00000618881 0 0 0 1 1 

ENST00000618882 0 0 0 1 1 

ENST00000618887 0 2.75718 -inf 0.0409747 0.502693 

ENST00000496116 1.83384 1.36016 0.431093 0.676565 0.99999 

ENST00000496117 1.25275 0 inf 0.0637675 0.502693 

ENST00000496114 0 0.167968 -inf 0.127744 1 

Note: 

(1) Gene Id: gene ID

(2) ST_2: mean of FPKMs in sample 1

(3) SN_2: mean of FPKMs in sample 2

(4) log2FoldChange: log2(Sample1/Sample2)

(5) pvalue(pval): p-value

(6) qvalue(p-adjusted): adjusted p-value. Lower qvalue indicates more significant differential expression 

3.14 Functional enrichment of differential mRNAs 
The differential genes generated by cuffdiff are used for mRNA enrichment analysis. 
3.14.1 GO Enrichment of Differential mRNAs 

3.14.1.1 GO enrichment of differential mRNAs 
Table 3.14.1.1 GO enrichment of differential mRNAs 

GO_accession Description Term_type Over_represented_pValue padj fg bg 

GO:0005515 protein binding molecular_function 2.47E-27 1.04E-23 1083 3739 

GO:0005488 binding molecular_function 3.17E-21 6.66E-18 2268 3739 

GO:0016787 hydrolase 

activity 

molecular_function 8.85E-12 1.24E-08 673 3739 
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GO:0031012 extracellular 

matrix 

cellular_component 7.14E-09 7.50E-06 80 3739 

GO:0006810 transport biological_process 4.63E-08 3.24E-05 543 3739 

GO:0051234 establishment 

of localization 

biological_process 4.63E-08 3.24E-05 543 3739 

Note: 

(1) GO_accession: the unique id in Gene Ontology database 

(2) Description: function description in gene ontology

(3) Term_type: type of the GO term (one of cellular_component, biological_process or molecular_function)

(4) Over_represented_pValue: statistical significance on enrichment 

(5) padj: adjusted p-value. Normally, padj < 0.05 means the gene is enriched in that term

(6) fg: the number of differential genes related to the GO term

(7) bg: the number of differential genes that have GO annotation. 

3.14.1.2 DAG of GO-enriched Differential mRNAs 

Figure 3.14.1.2 DAGs of GO enrichment 
Node represents GO term, and box represents the top 10 terms of GO enrichment. Deeper color indicates higher enrichment and 

vice versa. The GO term and the padj value of enrichment are shown in each node. 

3.14.1.3 Bar plot of GO-enriched Differential mRNAs 
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Figure 3.14.1.3 Bar plot of GO enrichment 
Node represents GO term, and box represents the top 10 terms of GO enrichment. Deeper color indicates higher enrichment and 

vice versa. The GO term and the padj value of enrichment are shown in each node. 

3.14.1.4 Clustering of GO-enriched Differential mRNAs 

Figure 3.14.1.4 Clustering of enriched GO terms 
The union of all terms on level 3 are used for clustering, and the expression level of all genes in each term is calculated. Terms in 

red and green colors represent high and low expression of genes in the corresponding terms, respectively, and the number in 
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parenthesis after the term indicates the number of corresponding differential genes. 

3.14.2 KEGG Enrichment of Differential mRNAs 

3.14.2.1 Summary of KEGG Enrichment of Differential mRNAs 

Table 3.14.2.1 KEGG enrichment of differential mRNAs 
#Term Id fg bg P-Value padj 

Focal adhesion hsa04510 92 207 0.003657421 0.77563385 

Pathways in cancer hsa05200 134 327 0.005540242 0.77563385 

Note: 

(1) #Term: Description of the KEGG pathway

(2) Id: unique pathway ID in the KEGG database

(3) fg: number of differential genes in the pathway

(4) bg: number of genes in the pathway

(5) P-value: statistical significance of the enrichment

(6) padj: adjusted p-value. Normally, padj < 0.05 means the term is enriched

3.14.2.2 Scatter Plot of KEGG Enrichment of Differential mRNAs 

Figure 3.14.2.2 Scatter plot of enriched KEGG pathways of differential mRNAs 
Vertical coordinates represent pathway name, and horizontal coordinates represent Rich factor. The size and color of point 

represent the number of differential genes in the pathway and the range of different Q value, respectively. 

3.14.2.3 Enriched KEGG Pathway of Differential mRNAs 
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Figure 3.14.2.3 Enriched KEGG pathways of differential mRNAs 

3.14.2.4 Clustering of KEGG-enriched Differential mRNAs 

Figure 3.14.2.4 Clustering of KEGG enrichment 
The union of all pathways are used for clustering, and the expression level of all genes in each pathway is calculated. Pathways 

in red and green colors represent high and low expression of genes in the corresponding pathways, respectively, and the number 

in parenthesis after the pathway indicates the number of corresponding differential genes. 
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3.15 Network analysis of protein-protein interactions of differential 

mRNAs 
The STRING protein-protein interaction database (http://string-db.org/) is used to 
construct the interaction network. If the organism exists in the database, the target 
gene set (such as differentially expressed gene list), are retrieved directly for network 
construction. Otherwise, the target gene set is blastx searched (Evalue set to 1e-10) 
against the close species or model organisms in the string database, and the results are 
used network construction.  
The interaction network data file are provided and can be imported to the Cytoscape 
for editing. Users can summarize and edit the graph according to the topological 
attributes of some networks. For example, the size of node is in proportion to its 
degree, that is, the more the edges connected to it, the larger the node and its degree, 
indicating that these nodes may be the core nodes in the network. The color of node is 
related to its clustering coefficient. The color gradients from green to red means the 
corresponding clustering coefficient changes from low to high. The clustering 
coefficient represents the connectivity of the node and its adjacent nodes, and a higher 
clustering coefficient means the connectivity is better. According to the purpose and 
need of the research, users can also customize the graph by adjusting the position and 
color of the node and annotating the expression levels and so on. It should be noted 
that the blastx alignment can not ensure good accuracy. This part of analysis, which 
may assist the user to find some important transcripts, is supplied for reference 
purpose only. The demonstration of interaction network generated by Cytoscape is 
shown below:  
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Figure 3.15 Demonstration of interaction network generated by Cytoscape 

3.16 Comparison of expression levels of lncRNAs and mRNAs 
3.16.1 Comparison of expression levels of lncRNAs and mRNAs  
The mean of expression levels of lncRNAs and mRNAs are used and 
log10-transformed (log10(FPKM+1)) for use in the violin plot.  
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Figure 3.16.1 Violin plot of expression levels of lncRNAs and mRNAs 
Horizontal axis represents the molecular type, and vertical axis represents log10(FPKM+1). The width of violin indicates the 

number of transcripts under current expression level. 

3.16.2 Expression analysis of differential lncRNAs and mRNAs  
The expression of differential transcripts or genes is visualized by volcano plot. For 
samples with replicates, the threshold is qvalue < 0.05, otherwise the threshold is 
qvalue < 0.05 and |log2FoldChange| > 1.  

Figure 3.16.2 Volcano plot of differential transcripts 
The differential expression with statistical significance are represented by red (up-regulated mRNAs), green (down-regulated 

mRNAs), yellow (up-regulated lncRNAs) and brown (down-regulated lncRNAs) points, respectively. Horizontal axis represents 

the fold change of transcripts in different samples, and vertical axis represents the statistical significance of differential 

expression. 

3.16.3 Distribution of lncRNAs and mRNAs in chromosomes 
Genes are usually regularly distributed in chromosomes, and those that have similar 
functions may cluster in the same chromosome. Meanwhile, The adjacent genes 
usually have similar functions, or involved in the same cell type or metabolic pathway, 
and they are more possibly regulated by each other, compared to genes in long 
distance. Therefore, for differential expression studies, the distribution of genes and 
adjacent genes in the chromosome may be important, which is the key for selection of 
differential genes. In addition, higher density of differential genes within a region on 
the chromosome can help us to find interested genes.  
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Figure 3.16.3 Distribution of differential genes on chromosomes 
The differential genes are screened based on FPKM values from different samples (The threshold is qvalue < 0.05). 

3.16.4 Clustering of differential lncRNAs and mRNAs 
The clustering analysis is used to assess the expression of transcripts under different 
experimental conditions. The functions of novel transcripts or the unknown functions 
of known transcripts can be identified by clustering of genes with the same or similar 
expression, since these transcripts may have similar functions, or involved in the same 
metabolic pathway or cellular component. The FPKMs of transcripts are used for 
hierarchical clustering, where different color indicates different grouping. The ones 
within the same group have similar expression, which may have similar function or 
involved in the same biological process.  
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Figure 3.16.4 Clustering of differentially expressed transcripts 
Hierarchical clustering based on FPKMs, where log10(FPKM+1) is used for clustering. Red color represents genes with higher 

expression, while blue color represents genes with lower expression.  

3.16.5 Venn diagram of differential expression 
When there are 2-5 samples, the comparison of each group can be visualized as venn 
diagram, which is intuitive to explore unique and common transcripts from each 
sample.  

Figure 16.5 Venn diagram of differentialy expressed genes 
The sum of the number in each big circle represents the total number of differential transcripts in the comparison, and the number 

in the overlap region represents the number of shared transcripts. 
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3.17 Comparison of structures of lncRNAs and mRNAs 
To study the difference of the lncRNAs and mRNAs molecules and whether the 
predicted lncRNAs consist with the annotated lncRNAs, the structures of lncRNAs 
and mRNAs are compared based on the length of the transcript and the number of 
exons and ORFs.  

3.17.1 Length comparison of lncRNAs and mRNAs 
The result of length comparison is shown below: 

Figure 17.1 Length comparison of lncRNAs and mRNAs 
The figures in the top and bottom are the length distribution of lncRNAs and mRNAs, respectively. Horizontal axis represents the 

length of transcripts, and vertical axis represents the number of transcripts for each length. 

3.17.2 Comparison of exon numbers of lncRNAs and mRNAs 
The result of the comparison is shown below:  
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Figure 3.17.2 Comparison of exon numbers of lncRNAs and mRNAs 
The figures in the top and bottom are the distribution of exon numbers of lncRNAs and mRNAs, respectively. Horizontal axis 

represents the number of exons, and vertical axis represents the number of transcripts for each exon number. 

3.17.3 Comparison of ORF length of lncRNAs and mRNAs 
The ORFs of known genes are retrieved based on the gene annotations, and the ORFs 
of lncRNAs are predicted by estscan and translated to protein sequences. The length 
distribution of ORFs is shown below:  

Figure 3.17.3 Comparison of ORF length of lncRNAs and mRNAs 
The figures in the top and bottom are the distribution of ORF length of lncRNAs and mRNAs, respectively. Horizontal axis 

represents the length of ORFs, and vertical axis represents the number of transcripts for each ORF length. 
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3.18 LncRNA-mRNA interaction network 
LncRNAs and mRNAs can be associated by the targeting relation, and mRNAs can be 
associated by protein-protein interactions, then the lncRNA-mRNA-protein 
interaction network can be created. The differential lncRNAs and the targeted cis- or 
trans-acting mRNAs are associated, and mRNAs are associated by using the STRING 
database (http://string-db.org/) (See the section "Network analysis of protein-protein 
interactions of differential mRNAs" above for details).  
The data files of lncRNA-mRNA and mRNA-mRNA interaction networks are 
provided and can be imported to the Cytoscape for editing. Users can summarize and 
edit the graph according to the topological attributes of some networks. According to 
the purpose and need of the research, users can also customize the graph by adjusting 
the position and color of the node and annotating the expression levels and so on. It 
should be noted that the blastx alignment can not ensure good accuracy. This part of 
analysis, which may assist the user to find some important genes, is supplied for 
reference purpose only. The demonstration of interaction network generated by 
Cytoscape is shown below:  

Figure 3.18 Demonstration of interaction network generated by Cytoscape 
LncRNAs and target genes are shown in circle and triangle, respectively. The solid line in red color represents the interaction of 

lncRNAs and cis-acting targets, the dashed line in green color represents the interaction of lncRNAs and trans-acting targets, and 

the solid line in purple color represents the mRNA-mRNA interaction. When there are not trans-acting targets, the dashed line in 

green color is not available accordingly. 
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