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1 Experimental Procedures

From RNA sample preparation to data acquisition, each step such as sample detection,
library construction and sequencing, can affect the quality and quantity of data. High
quality data is essential for accurate and confidential analysis. In order to ensure the
quality and reliability of the sequencing data, every step of data production is under
rigid control. The workflow is as follows:
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1.1 Quality check of total RNAs

There are four methods for quality check (QC) of RNA samples:

(1) Agarose gel electrophoresis: for RNA integrity and potential contamination
(2) Nanodrop: for RNA purity (OD260/0D280)

(3) Qubit: quantify RNA concentration

(4) Agilent 2100: check RNA integrity again

1.2 Library construction

After RNA QC, rRNAs were removed by using epicentre Ribo-Zero™ Kit. The
purified RNAs were first fragmented randomly to short fragments of 150-200 bp by
addition of fragmentation buffer, then cDNA synthesis followed using random
hexamers. After the first strand was synthesized, a custom second-strand synthesis
buffer (Illumina), dNTPs (dUTP, dATP, dGTP and dCTP) and DNA polymerase I
were added to synthesize the second-strand. Then followed by purification by
AMPure XP beads, terminal repair, polyadenylation, sequencing adapter ligation, size
selection and degradation of second-strand U-contained cDNA by the USER enzyme.



The strand-specific cDNA library was generated after the final PCR enrichment. The
workflow is as follows:
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1.3 Library QC

The concentration of library was first quantified by Qubit2.0, then diluted to 1 ng/ul,
and the insert size was checked by Agilent 2100 and was further quantified by qPCR
(library concentration > 2 nM).

1.4 Sequencing

If the library qualifies, it will be sequenced on an Illumina HiSeq platform according
to effective concentration and data volume.



2 Bioinformatics Analysis Procedures

The flowchart below depicts the bioinformatics analysis pipeline we used.
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3 Analysis Result

3.1 Raw Data

The original raw image data obtained from high throughput sequencing platforms (e.g.
Illumina platform) is transformed to sequenced reads by base calling. The sequenced
reads are regarded as raw data or raw reads, which is recorded in FASTQ file (fq)
containing sequence information (reads) and corresponding sequencing quality
information.

Every read in FASTQ format is stored in four lines as follows:
@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18: ATCACG
GCTCTTTGCCCTTCTCGTCGAAAATTGTCTCCTCATTCGAAACTTCTCTGT

+

@QCFFFDEHHHHFIJJJQ@FHGIIIEHITIJBHHHIJJEGITIJJIGHIGHCCE

Line 1 beginning with a '@' character is followed by a sequence identifier and an
optional description (like a FASTA title line). Line 2 is the raw sequence reads. Line 3
begins with a '+' character and is optionally followed by the same sequence identifier
(and any description) again. Line 4 encodes the quality values for the sequence in



Line 2, and must contain the same number of characters as bases in the sequence.

Table 3.1.1 Illumina sequence identifier details

EAS139 The unique instrument name

136 Run ID

FC706VIJ Flowcell ID

2 Flowcell lane

2104 Tile number within the flowcell lane

15343 'x'-coordinate of the cluster within the tile

197393 'y'-coordinate of the cluster within the tile

1 Member of a pair, 1 or 2 (paired-end or mate-pair reads only)
Y Y if the read fails filter (read is bad), N otherwise

18 0 when none of the control bits are on, otherwise it is an even number
ATCACG Index sequence

The ASCII value for every character at the fourth line minus 33 will be the
corresponding sequencing base quality value at the second line. If the sequencing
error rate is recorded by "e" and the base quality for Illumina platform is expressed as
Q,hrea> the equation No.1 as below will be obtained:

Equation 1: Qs = -10log,,(e)
The relationship between sequencing error rate (¢) and sequencing base quality value
(Qpirea) 18 listed as below (Table 4.2):

Table 3.1.2 Sequencing error rate and corresponding base quality value

Sequencing error rate Sequencing quality value Corresponding character
5% 13

1% 20 5

0.1% 30 ?

0.01% 40 I

3.2 Quality Control

3.2.1 Sequencing Error Rate Examination

For Illumina SBS technology, the distribution of sequencing error rate has two
features:

(1) Error rate grows with sequenced reads extension because of the consumption of
sequencing reagent. The phenomenon is common in the Illumina high-throughput
sequencing platform (Erlich et al., 2008; Jiang et al., 2011).

(2) The reason for the high error rate of the first six bases is that the random
hex-primers and RNA template bind incompletely in the process of cDNA synthesis
(Jiang et al., 2011).



Error rate distribution along reads (Sample)
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Figure 3.2.1 Sequencing error rate distribution
The x-axis represents position in reads, and the y-axis represents the average error rate of bases of all reads at a

position.

3.2.2 Sequencing Data Filtration

Raw sequencing data may contain adapter contaminated and low-quality reads. These
sequence artifacts may increase the complexity of downstream analyses, which means
that quality control is an essential step. All the downstream analyses will be based on
clean reads that pass quality control.

We performed quality control according to the following procedure:

(1) Discard a read pair if either one read contains adapter contamination;

(2) Discard a read pair if more than 10% of bases are uncertain in either one read;

(3) Discard a read pair if the proportion of low quality bases is over 50% in either one
read.

RNA-seq Adapter sequences (Oligonucleotide sequences of adapters from
TruSeq™ RNA and DNA Sample Prep Kits):

5’ Adapter:

5" -AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCG
ATCT-3’

3’ Adapter:

5" -GATCGGAAGAGCACACGTCTGAACTCCAGTCAC (6-indexs) ATCTCGTATGC
CGTCTTCTGCTTG-3’



Classification of Raw Reads (Sample)

Clean Reads (107615455, 94.98%)
Containing N (112026, 0.10%)
Low Quality (4525105, 3.99%)
Adapter Related (1046911, 0.92%)

Figure 3.2.2 Raw data filtration result
Note: Reads were discarded in pairs.
(1) Containing N: the number of read pairs with either one read containing uncertain nucleotides more than 10%, and the
proportion in raw data.
(2) Low Quality: the number of read pairs with either one read containing low quality (below 5) nucleotides more than 50 percent,
and the proportion in raw data.
(3) Adapter related: the number of read pairs filtered out with adapter contamination, and the proportion of filtered read pairs in
raw data.

(4) Clean reads: the number of read pairs passed quality control and the proportion in raw data.

3.2.3 Statistics of Sequencing Quality

According to the sequencing feature of Illumina platforms, for paired-end sequencing
data we require that Q30 (the percent of bases with phred-scaled quality scores greater
than 30) should be above 80%.

Table 3.2.3 Overview of data quality

Sample Clean Error GC

Raw reads Clean reads Q20(%) Q30(%)
name bases(G) rate(%) content(%)
Control_1 128375922 122490956 18.37 0.03 97.98 93.76 4473
Control_2 128375922 122490956 18.37 0.03 96.94 91.33 45.06
Sample_1 113299497 107615455 16.14 0.03 97.83 93.29 47.06
Sample_2 113299497 107615455 16.14 0.03 96.75 91.01 47.06

The details of the table are described below:

(1) Sample name: For PE sequencing, * 1 and * 2 indicate reads on the left and right end, respectively;

(2) Raw reads: Statistics of raw reads, each adjacent four lines contains the information of one read, and the total read number of
each file is calculated;

(3) Clean reads(G): Same as raw reads, except that only the filtered reads, which all subsequent analysis is based on, is



calculated;

(4) Clean bases: The product of number and length of sequences, calculated as Giga bases;

(5) Error rate: The error rate of sequencing, calculated based on Equation 1;

(6) Q20, Q30: The percentage of total number of bases where the Phred score is greater than 20 and 30, respectively;

(7) GC content: The percentage of G and C in all bases;

3.3 Mapping to a Reference Genome

The cleaned reads are aligned to the reference genome with Tophat2 (Kim et al., 2013) and the

algorithm of Tophat2 mainly includes three parts:
(1) Map the reads against transcriptome (optional);
(2) Map the full-length reads to the exons;

(3) Map the partial reads to two exons;

The algorithm of TopHat2 is described below (Kimetal.,2013):

(1) Transcriptome alignment (optional)

= ;W — m— =
— e [ — == ] /
I—I—]—]— _— N Le | _-_— —I] —I Read are aligned against transcriptome, [
........ "E’;GS

(2) Genome alignment

Reads spanning s single exon are mapped

‘ Transcriptome index I

Readsare aligned against genome.

-— s e
R 3
O — == Genome index
. " = |
(3) Spliced alignment \ ‘
Readsarespht  W— v :
intosegments - Reads are splt into smaller segments

(3-1) Segment alignment to genome

(3-2) identification of splice sites
(including indels and fusion break points)

which are then aligned to the genome.

Genome index |

L
v

Segment mappings are used to find potential splice sites

usually when the distance between the mapped positions
of the left and the right segments are longer than the
length of the middie part of a read.

v

(3-3) Segments aligned to junction Unmapped segments Sequences flanking a splice site are concatenated
flanking sequences ~ agge...... | P . and segments are aligned to them.
flanking seq1  flanking seq 2 Junction flanking index
U
— -
(3-4) Segment alignments stitched _ Mapped segments against either genome or flanking
togetherto form whole read alignments T — sequences are gathered to produce whole read alignments.
v
= —
(3-5) Re-alignment of reads minimally O - Genome mapped reads with alignments extendinga few
overlapping introns o— bases into introns are re-aligned to exons instead.

When the reference genome is appropriate and the experiment is contamination-free,
the TMR (Total Mapped Reads or Fragments) should be larger than 70% and MMR
(Multiple Mapped Reads or Fragments) should be no more than 10%.



3.3.1 Statistics of Mapped Reads

Sample name
Total reads

Total mapped
Multiple mapped
Uniquely mapped
Read-1

Read-2

Reads map to '+'
Reads map to '-'
Non-splice reads

Splice reads

Control
103413896
87319755 (84.44%)
4739091 (4.58%)
82580664 (79.85%)
41400161 (40.03%)
41180503 (39.82%)
41274699 (39.91%)
41305965 (39.94%)
64293027 (62.17%)
18287637 (17.68%)

Table 3.3.1 Statistics of reads mapped to reference genome

Sample

95671374
80291861 (83.92%)
3933783 (4.11%)
76358078 (79.81%)
38289381 (40.02%)
38068697 (39.79%)
38168756 (39.9%)
38189322 (39.92%)
60583242 (63.32%)
15774836 (16.49%)

The details of the mapping results are described below:

(1) Total reads: Number of reads after data filtering (clean data);

(2) Total mapped: Number of reads that can be mapped to the genome. Generally, if there is proper reference genome and no
contamination during the experimental procedure, the percentage will be higher than 70%;

(3) Multiple mapped: Number of sequences that are mapped to multiple positions in the reference sequences. the percentage of
this part of the data is generally less than 10%);

(4) Uniquely mapped: Number of reads that are mapped to the unique position in the reference sequences;

(5) Reads map to '+', Reads map to '-': Number of reads that are mapped to the plus or minus strand, respectively.

(6) Splice reads: Number of reads that are mapped to two exons (also known as the junction reads). Similarly, non-splice reads

are those that the full-length reads are mapped to one exon. The percentage of splice reads depends on the length of reads.

3.3.2 Distribution of Reads On Chromosomes
To obtain an overview of the distribution of mapped reads on each chromosome, the
"window size" is set to 1K, the median number of reads mapped to the genome inside
the window is calculated, and transformed to the log2value. In general, the longer the
whole chromosome, the more total number of mapped reads within it would be
(Marquez et al., 2012).
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Figure 3.3.2 Distribution of reads on chromosomes
The horizontal axis represents the length of chromosome (Mb), and the vertical axis represents log2(median of read density).

Green and red bars represent the plus and minus strands, respectively.

3.3.3 Distribution of Known types of Genes
The coverage of different known gene types in this specie is analysed using the union
model by HTSeq. According to the expression quantity, the expressed distribution of
various types of genes in sample were made counts and shown in table 3.3.3:

Table 3.3.3 The distribution list of the known types of genes

Sample_name Sample Control

mRNA 48722201 (67.41%) 38998933 (58.78%)
misc_RNA 994223 (1.38%) 1074817 (1.62%)
ncRNA 11323217 (15.67%) 11267598 (16.98%)
pseudogene 6464 (0.01%) 8613 (0.01%)
rRNA 16106 (0.02%) 48237 (0.07%)
tRNA 202928 (0.28%) 308863 (0.47%)
Others 11012912 (15.24%) 14635991 (22.06%)

The table above is pictured shown below:



Classification of Raw Reads (Sample)

MRNA(67.4%)
misc_RNA(1.4%)
NcRNA(15.7%)

pseudogene(0.0%)
ANA(0.0%)
B rNa©.3%)

Others(15.2%)

Figure 3.3.3 Distribution of reads in different kinds of genes

3.3.4 Visualization of Aligned Data

Files are provided in BAM format, a standard file format that contains mapping
results, and the corresponding reference genome and gene annotation file for some
species. The Integrative Genomics Viewer (IGV) is recommended for visualizing data
from BAM files. The IGV has several features: (1) it displays the positions of single
or multiple reads in the reference genome, as well as read distribution between
annotated exons, introns or intergenic regions, both in adjustable scale; (2) displays
the read abundance of different regions to demonstrate their expression levels, in
adjustable scale; (3) provides annotation information for both genes and splicing
isoforms; (4) provides other related annotation information; (5) displays annotations
downloaded from remote servers and/or imported from local machines.

10
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Figure 3.3.4 The interface of the IGV browser

3.4 RNA-Seq Quality Assignment

FPKM (expected number of Fragments Per Kilobase of transcript sequence per
Millions base pairs sequenced), which considers both the sequencing depth and the
gene length, is the most commonly used method for gene expression profiling
(Trapnell Cole, et al., 2010), so that the calculated expression levels can be used

directly to compare differences in gene expression between samples.

3.4.1 Comparative Analysis of Gene Expression Level

Boxplot and density plot of the FPKMs of all transcripts are used to compare the their
expression under different experiments. For samples with replicates, the mean of

FPKMs from all replicates is used.

11
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Figure 3.4.1 Comparison of gene expression under different expressions
Note:
(1) boxplot of FPKM values. X an y axis represent the respective sample name and the value of loglO(FPKM+1). For each
sample, the plot region represents the statistics of maximum, upper quartile, median, lower quartile and minimum, respectively
from top to bottom.

(2) FPKM density distribution. X and y axis represent the value of log10(FPKM+1) and the density of genes, respectively.

3.4.2 Correlation Analysis among Samples

Biological replicates are necessary for any biological experiment, including those
involving RNA-seq technology (Hansen et al., 2012). Biological replicates in
RNA-seq can demonstrate whether the experiment is repeatable. If biological
replicates are unavailable, it will be impossible to estimate the level of biological
variability in expression for each gene in a study.

The correlation between samples is an important indicator for testing the reliability of
the experiment. The closer the correlation coefficient is to 1, the greater the similarity
of the samples. ENCODE suggests that the square of the Pearson correlation
coefficient should be larger than 0.92, under ideal experimental conditions. In this
project, the R? should be larger that 0.8.

12
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Figure 3.4.2 RNA-Seq correlation
Heat maps of the correlation coefficient between samples are also shown. R?, the square of the Pearson coefficient correlation

coefficient between samples;

3.5 Transcripts Assembly

The Cufflinks software (Trapnell et al., 2010), which uses statistical model, can
simultaneously assemble and quantify the expression of isoforms and keep isoform
set as small as possible. It can report the maximum likelihood estimate of expression
data and use accurate strand information by passing options specific to
strand-specific library. The workflow and results of cufflinks assembly are shown

below:
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Seqname

GLO000191.

GLO000191.

GLO000191.

GLO000191.

GLO000191.

Note:

(1) Seqname: the name of chromosome or scaffold;

(2) Source: data source, it is "Cufflinks";

Source

Cufflinks

Cufflinks

Cufflinks

Cufflinks

Cufflinks

Feature

transcript

exon

transcript

exon

transcript

Figure 3.5.1 RNA-Seq correlation

Table 3.5.1 Results of cufflinks assembly (partial)

Start

3583

3583

3622

3622

9604

End

3717

3717

3903

3903

9764

Score

1000

1000

1000

1000

1000

Strand

(3) Feature: sequence type description, it is "transcript” or "exon";

(4) Start: transcript start position;

(5) End: transcript end position;

(6) Score: score of the assembly;

(7) Strand: transcript strand;

Frame

Attributes

gene_id "CUFF.1"; transcript_id "CUFF.1.1"; FPKM
"6.1941392125"; frac "0.400000"; conf_lo "0.000000";
conf_hi "0.813112"; cov "101.570893";

gene_id "CUFF.1"; transcript_id "CUFF.1.1";
exon_number "1"; FPKM "6.1941392125"; frac
"0.400000"; conf_lo "0.000000"; conf_hi "0.813112";
cov "101.570893";

gene_id "CUFF.2"; transcript_id "CUFF.2.1"; FPKM
"0.1756257804"; frac "0.600000"; conf_lo "0.000000";
conf_hi "0.585419"; cov "2.879894";

gene_id "CUFF.2"; transcript_id "CUFF.2.1";
exon_number "1"; FPKM "0.1756257804"; frac
"0.600000"; conf_lo "0.000000"; conf_hi "0.585419";
cov "2.879894";

gene_id "CUFF.3"; transcript_id "CUFF.3.1"; FPKM
"1.4539361301"; frac "1.000000"; conf_lo "0.000000";
conf_hi "0.530291"; cov "23.841503";

(8) Frame: type of transcript start position, cufflinks does not predict start/end codon, thus it is ".";

(9) Attributes: other descriptions of the sequence, such as gene ID, transcript ID and its quantification;

3.6 Identification of Candidate Long Noncoding RNAs

LncRNA is non-coding transcripts that are longer than 200-nt. Based on their
genomic positions, they can be classified to intergenic IncRNAs (lincRNAs), intronic
IncRNAs, anti-sense IncRNAs, sense IncRNAs, bidirectional IncRNAs and so on,
where lincRNAs account for the largest proportion. While focus on the first three
types of IncRNAs, the pipeline with a set of strict filters, as shown below, is used to
predict candidate IncRNAs based on their structures and non-coding features.

14



II RNA-seq data

Basic filtering

1.Recurrence in 22 samples or by >2 assemblers
2.Minimal reads coverage >3

3.Transcript length 2200 Exon number >2
4.Filter known non-IncRNA annotation
5.Classification of candidate INcRNAs

Coding potential filtering

PhyloCSF

Provisional IncRNA catalog

Figure 3.6 Flowchart of IncRNA filtering

3.6.1 Basic filtering

There are five steps for basic filtering:

Step 1: Merge all assembled transcripts by cuffcompare and select transcripts exist in
at least two samples;

Step 2: Select transcripts that are longer than 200 bp and have more than 2 exons;
Step 3: Calculate the coverage of each transcript by cufflinks and select transcripts
whose coverage = 3;

Step 4: Compare with known non-IncRNA and non-mRNA transcripts (rRNA, tRNA,
snRNA, snoRNA, pre-miRNA, pseudogenes etc.), and filter out the transcripts
identical or similar to these ones;

Step 5: Compare with known mRNAs according to the class code of cuffcompare
result (http://cufflinks.cbcb.umd.edu/manual .html#class_codes) to get candidate
lincRNAs, intronic IncRNAs and anti-sense IncRNAs.

The bar plot below shows the number of transcripts that were filtered out in each step.
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Figure 3.6.1.1 Statistics of IncRNA filtering

Horizontal axis represents the filtering step, and vertical axis represents the number of filtered transcripts in that step.

Table 3.6.1.1 Description of class_code

class_code meaning

= Complete match of intron chain

c Contained
j Potentially novel isoform (fragment): at least one splice junction is shared with a reference transcript
e Single exon transfrag overlapping a reference exon and at least 10 bp of a reference intron, indicating

a possible pre-mRNA fragment.

i A transfrag falling entirely within a reference intron

o Generic exonic overlap with a reference transcript

p Possible polymerase run-on fragment (within 2Kbases of a reference transcript)

r Repeat. Currently determined by looking at the soft-masked reference sequence and applied to

transcripts where at least 50% of the bases are lower case

u Unknown, intergenic transcript
X Exonic overlap with reference on the opposite strand
S An intron of the transfrag overlaps a reference intron on the opposite strand (likely due to read

mapping errors)

(.tracking file only, indicates multiple classifications)
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Figure 3.6.1.2 Filtering of IncRNAs based on class_code

Horizontal and vertical axes represent the type of class_code and the number of transcripts, respectively. The class_code "u",

and "x" stand for lincRNA, intronic IncRNA and anti-sense IncRNA, respectively.

3.6.2 Coding Potential Filtering

Coding potential is essential to determine if a transcript is a IncRNA, and several
popular softwares for coding potential analysis are adopted for coding potential
filtering, including CPC, CNCI, Pfam Analysis and PhyloCSF analysis (limited to
mammalian only), and the predicted IncRNAs come from the intersection of these

methods.

3.6.2.1 CPC Analysis

CPC (Coding Potential Calculator) can calculate coding potential by blastx search
against the protein database (The NCBI nr database is used here). Based on the
sequence features of the coding frame, the coding potential of the transcript is

assessed by support vector machine, and the results are given below.

Table 3.6.2.1 Summary of CPC analysis (partial)

Transcript id Transcript length Type Score
TCONS_00000082 363 coding 1.65903
TCONS_00000117 1901 noncoding -5.25003
TCONS_00000144 1631 coding 3.30387
TCONS_00000377 489 noncoding -1.02156
TCONS_00000435 1928 noncoding -5.06304
TCONS_00000556 981 coding 0.637386
Note:

(1) Transcript id: transcript ID;
(2) Transcript length: Transcript length;

(3) Type: transcript type, either "noncoding" or "coding";
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(4) Score: coding potential score. The transcript type is "noncoding" if the score < 0;

3.6.2.2 CNCI Analysis

CNCI (Coding-Non-Coding Index) can distinguish protein-coding and non-coding
transcripts from transcript assembly, which is independent of known annotations and
can predict the potential of coding or non-coding based on the features of nucleotide
triplets (Sun et al., 2013). The results of CNCI are shown below:

Table 3.6.2.2 Summary of CNCI analysis (partial)

Transcript id Type Score Start End
TCONS_00000082  coding 0.008101845 24 210
TCONS_00000117  noncoding -0.208177216 1482 1746
TCONS_00000144  coding 0.193568756 375 1374
TCONS_00000377  noncoding -0.002518776 60 90
TCONS_00000435  noncoding -0.233758796 0 189
TCONS_00000556  noncoding -0.174564258 81 141
Note:

(1) Transcript id: transcript ID

(2) Max score: max score of coding potential
(3) Start: ORF start position

(4) End: ORF end position

(5) Protein: protein sequence

3.6.2.3 Pfam Analysis

Pfamscan (Mistry et al., 2007) is used to search protein domains in the pfam HMM
database (Bateman et al., 2002) to eliminate sequences matched to known protein
domains, and both Pfam-A and Pfam-B databases are used. Pfam-A contains most
high quality known protein domains that are manually selected, while Pfam-B covers
more domains, which is complementary to Pfam-A. The translated protein sequences
are searched against the Pfam-A and Pfam-B databases by hmmscan, and the matched
sequences are considered to have coding potential, whereas others are most likely to
be non-coding transcripts.

Table 3.6.2.3 Summary of Pfam analysis (partial)

Seq id Hmm acc Hmm name Type Hmm Hmm Hmm Bit E-value
start end length  score
TCONS_00000082-1 PB003422  Pfam-B_3422 Pfam-B 991 1054 1054 40.8 9.20E-11
TCONS_00000117-0 ~ PB008900  Pfam-B_8900 Pfam-B 27 68 131 504 2.80E-13
TCONS_00000117-1 ~ PF13900.1 GVQW Domain 1 48 48 103.1 5.30E-30
TCONS_00000435-0  PF13900.1 GVQW Domain 1 48 48 101.9 1.30E-29
TCONS_00000435-1 PB008900  Pfam-B_8900 Pfam-B 33 64 131 31.6 1.80E-07
TCONS_00000435-1 PB000655  Pfam-B_655 Pfam-B 72 175 319 61.3 1.30E-16
Note:
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(1) Seq id: transcript ID+[0,1,2], transcripts not in the list are "noncoding"
(2) Hmm acc: pfam domain ID

(3) Hmm name: pfam domain name

(4) Type: pfam domain type

(5) Hmm start: start position of pfam domain

(6) Hmm end: end position of pfam domain

(7) Hmm length: length of pfam domain

(8) Bit score: alignment score

(9) E-value: E-value of the alignment, the criteria is: E-value 0.001

3.6.2.4 PhyloCSF Analysis

PhyloCSF (phylogenetic codon substitution frequency) is a tool that calculate the
coding potential of transcripts by using genome-wide sequence alignment of multiple
organisms. Two main arguments of PhyloCSF are phylogenetic tree and codon matrix
(Lin et al., 2011). Based on the genome-wide sequence alignment of multiple
organisms, the Codon Substitution Frequency (CSF) is calculated (CSF refers to the
frequency of codon substitution in multiple sequence alignment, and the codon
substitution ratio of coding and non-coding regions can be used to effectively
distinguish coding and non-coding sequences), and the coding potential of the
transcripts is scored by combining the distance information from phylogenetic tree of
organisms. According to previous studies, different species are found to have different
PhyloCSF threshold. Therefore, some known IncRNAs and mRNAs are sampled to
calculate the threshold. Since the screening model is designed for mammals, this tool
is limited to mammals only.

Table 3.6.2.4 Summary of phyloCSF analysis (partial)
Transcript id Max Start End Protein
score
TCONS_00000082 7.1440 1835 1912 MQQNCVSGLVPVCQLNSSGCSLSDDG
TCONS_00003321  97.1766 1077 1295 MYNADSISAQSKLKEAEKQEEKQIGKSVKQEDRQTPCSPD
STANVRIEEKHVRRSSVKKIEKMKEKVCRLPQL
TCONS_00005703 34.5244 342 599 MY SRSQASPSCGGGGGQGGLPRGLGWASLGGVFCEFAAK
GLGWVWGGPGVGLGSVLVSKASLTFASQITGAFPLDNSAL
RPTGSGF
TCONS_00001396 43.6306 390 725 MGCPGAGTGNPWDQPRLSLPFLAGVELALLHRSPAKGRK
MASGGLGLVLKAFCPQGVAGAPVLPQQEAIWGQQCPLGA
GASGPGV EEFGKCWNGCLVCPCSFSVTLLPTNSS
TCONS_00004972 61.0833 86066 86257 MDLLVLSQGHQTNTLDIIHIHKEALTKVMESRQHVAEGKT
QVQKKVQRLMTSESQEQDFFGHFG
Note:
(1) Transcript id: transcript ID
(2) Max score: max score of coding potential

(3) Start: ORF start position
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(4) End: ORF end position

(5) Protein: protein sequence

3.6.2.5 Venn Diagram of Coding Potential Analysis

The noncoding transcripts identified by CPC, CNCI, Pfam and PhyloCSF were
summarized and shown as a venn diagram below, and the intersection of these results
is considered to be the final IncRNA data set for further analysis.

PFAM phyloCSF
cPC 126 272 CNCI
86 145 764
68 310 1373 163

9763

127 297
927

54

Figure 3.6.2.5 Venn diagram of results from four tools mentioned above
Number in each circle and overlap represent the respective total and shared number of noncoding transcripts predicted by the

software.

3.7 IncRNA Expression Analysis

The expression of the filtered IncRNAs was analyzed by cuffdiff
(http://cufflinks.cbcb.umd.edu/manual .html#cuffdiff), and the results are shown
below:

Table 3.7 FPKM of IncRNA in each sample (partial)

transcript_id Sample Control
TCONS_00004163 0.64279 0.639313
TCONS_00072426 0.594465 1.58591
TCONS_00002202 0.593291 0474413
TCONS_00046915 1.83413 1.90649
TCONS_00050940 1.00281 1.64808
TCONS_00098287 0.518418 0.131542

3.8 IncRNA Target Prediction
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As IncRNAs function mainly in cis or trans manner on their protein-coding target genes,
IncRNA target prediction consists the following two sections.

cis-acting target prediction

The cis-acting target prediction assumes that the function of IncRNA is related to adjacent
protein coding genes. Therefore,coding genes that are 100 kb upstream or downstream  of
IncRNA are considered to be target genes.

Table 3.8.1 cis-acting target gene prediction results

IncRNA_geneid mRNA _geneid
XLOC_000150 55160
XLOC_000223 51538
XLOC_000223 2170
XLOC_000223 347735
XLOC_000795 127018
XLOC_000828 5664

Note:
(1) IncRNA_geneid: IncRNA gene ID

(2) mRNA_geneid: cis-acting target gene of this IncRNA

3.9 Functional Enrichment Analysis of IncRNA Target Genes

The GO enrichment analysis for cis-acting and trans-acting target genes were
conducted, and only the cis-acting target genes are shown in the report.

3.9.1 GO Enrichment of LncRNA Target Genes

Gene Ontology (GO, http://www.geneontology.org/), as the standard classification
system of gene function, can elucidate the functions of IncRNA targets that are
differentially expressed. The GOseq R package (Young et al, 2010), which is based on
Wallenius non-central hyper-geometric distribution, is used for gene ontology analysis.
The Wallenius distribution, compared to hyper-geometric distribution, has the feature
that the probability of sampling from a population is different from sampling from
another one by assessing the bias of gene length, which can calculate the probability
of GO term enrichment more accurately.

3.9.1.1 GO Enrichment of LncRNA Target Genes
The results of GO enrichment of IncRNA target genes are shown below:

Table 3.9.1.1 GO enrichment of IncRNA target genes

GO_accession Description Term_type Over_represented_pValue padj fg bg

G0:0004827 proline-tRNA ligase molecular_function 0.0022518 1 1 6
activity

G0:0006433 prolyl-tRNA biological_process 0.0022518 1 1 6
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aminoacylation

G0O:0004000 adenosine deaminase molecular_function 0.003709 1 1 6
activity
G0:0000103 sulfate assimilation biological_process 0.0061562 1 1 6
G0:0004020 adenylylsulfate kinase molecular_function 0.0061562 1 1 6
activity
G0:0019239 deaminase activity molecular_function 0.0064888 1 1 6
Note:

(1) GO_accession: the unique id in Gene Ontology database

(2) Description: function description in gene ontology

(3) Term_type: type of the GO term (one of cellular_component, biological process or molecular_function)
(4) Over_represented_pValue: statistical significance on enrichment

(5) padj: adjusted p-value. Normally, padj < 0.05 means the gene is enriched in that term

(6) fg: the number of IncRNA target genes related to the GO term

(7) bg: the number of IncRNA target genes that have GO annotation.

3.9.1.2 DAG of GO-enriched LncRNA Target Genes

The Directed Acyclic Graph (DAG) is used to visualize the GO enrichment, where
branches represent inclusion of the two GO terms, and the scope of the term
definitions becomes smaller and smaller from top to bottom. Normally, the top 10
results from GO enrichment are selected as main nodes in directed acyclic graph,
where the associated terms are also represented and the depth of colors indicates
enrichment level. DAGs for biological process, molecular function and cellular
component are shown respectively.

The DAGs of GO enrichment of IncRNA target genes are shown below:

Figure 3.9.1.2 DAGs of GO enrichment of IncRNA target genes
Node represents GO term, and box represents the top 10 terms of GO enrichment. Deeper color indicates higher enrichment and

vice versa. The GO term and the padj value of enrichment are shown in each node.
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3.9.1.3 Bar plot of GO-enriched LncRNA Target Genes

The top 30 enriched GO terms in biological process, cellular component and
molecular function are shown in the bar plot below. If there are less than 30 GO terms,
all of them are shown in the plot.

Gene Function Classification (GO)

100
'
1
13408

Percent of genes
Number of genes

0.1

Biclogica *rccess. Cellular Companent Nolecular Function

Figure 3.9.1.3 Bar plot of GO enrichment of IncRNA target genes
Node represents GO term, and box represents the top 10 terms of GO enrichment. Deeper color indicates higher enrichment and

vice versa. The GO term and the padj value of enrichment are shown in each node.

3.9.1.4 Clustering of GO-enriched IncRNA Target Genes

Clustering of genes based on GO term enrichment is essential for studying the
differences of IncRNA target gene expression among samples, where it is easy to find
important genes that are differentially expressed. The vertical clustering is useful to
determine correlation of samples based on gene expression levels, while the
horizontal clustering is useful for finding some classes that have similar function and
expression. In this analysis, the differences of gene expression from the top 30
significant GO terms are shown in the result. If the number is less than 30, all of them
are used.
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Figure 3.9.1.4 Clustering of enriched GO terms
The union of all terms on level 3 are used for clustering, and the expression level of all genes in each term is calculated. Terms in
red and green colors represent high and low expression of genes in the corresponding terms, respectively, and the number in

parenthesis after the term indicates the number of corresponding IncRNA target genes.

3.9.2 KEGG Enrichment of LncRNA Target Genes
The KEGG enrichment analysis for cis-acting and frans-acting target genes were
conducted, and only the cis-acting target genes are shown in the report.

3.9.2.1 KEGG Enrichment of LncRNA Target Genes

The interactions of multiple genes may be involved in certain biological functions.
KEGG (Kyoto Encyclopedia of Genes and Genomes) is a collection of manually
curated databases dealing with genomes, biological pathways, diseases, drugs, and
chemical substances. KEGG is utilized for bioinformatics research and education,
including data analysis in genomics, metagenomics, metabolomics and other omics
studies. Pathway enrichment analysis identifies significantly enriched metabolic
pathways or signal transduction pathways associated with differentially expressed
genes compared with the whole genome background. The formula is:

M\X(N-M
mlly n—i
p=1-2 N
i=0 4V
n
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Here, N is the number of all genes with a KEGG annotation, n is the number of
IncRNA target genes in N, M is the number of all genes annotated to specific
pathways, and m is number of IncRNA target genes in M.

List of enriched KEGG terms:

Table 3.9.2.1 KEGG enrichment of IncRNA target genes

#Term Id fg bg P-Value padj

Metabolism of xenobiotics by cytochrome P450 hsa00980 24 74 0.000823954 0.136732588
Steroid hormone biosynthesis hsa00140 20 57 0.000994419 0.136732588
Transcriptional misregulation in cancer hsa05202 43 179 0.002238153 0.205164005
Drug metabolism - cytochrome P450 hsa00982 20 68 0.005389137 0.274839746
Ascorbate and aldarate metabolism hsa00053 11 27 0.005467068 0.274839746
Retinol metabolism hsa00830 19 64 0.006060405  0.274839746

Note:

(1) #Term: Description of the KEGG pathway

(2) Id: unique pathway ID in the KEGG database

(3) fg: number of IncRNA target genes in the pathway
(4) bg: number of genes in the pathway

(5) P-value: statistical significance of the enrichment

(6) pad;j: adjusted p-value. Normally, padj < 0.05 means the term is enriched

3.9.2.2 Scatter Plot of KEGG Enrichment of LncRNA Target Genes

Scatter diagram is a graphical display way of KEGG enrichment analysis results. In
this plot, enrichment degree of KEGG can be measured through Rich factor, Qvalue
and genes counts enriched to this pathway. Rich factor is the ratio of IncRNA target
genes counts to this pathway in the annotated genes counts. The more the Rich factor
is, the higher is the degree of enrichment. Qvalue is the adjusted p-value after multiple
hypothesis testing, and its range is [0,1]. The more the gqvalue is close to zero, the
more significant is the enrichment. Top 20 most significant enriched pathways are
chosen in KEGG scatter plot, and if the enriched pathways counts is less than 20, then
put all of them into the plot. KEGG enrichment scatter diagram is as follows.
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Figure 3.9.2.2 Scatter plot of enriched KEGG pathways of IncRNA target genes
Vertical coordinates represent pathway name, and horizontal coordinates represent Rich factor. The size and color of point

represent the number of INRNA target genes in the pathway and the range of different Q value, respectively.

3.9.2.3 Enriched KEGG Pathway of LncRNA Target Genes

The results of Enriched KEGG pathway of IncRNA target genes are shown below. For
convenience of viewing the distribution of IncRNA target genes in pathways, those genes
were added to the figures, and they can be viewed as described below: open the folder
results/mRNA_Enrichment/KEGGEnrichment, where each html file contains different
comparison of samples. Open one file and the pathways can be viewed by clicking on it.
The KO node with red box indicates differential IncRNA target genes, and the mouse
hovering on the KO node will popup the details of differential genes. All the operations
described above can be done offline, and if the network connection is available, clicking
on each node will open the associated webpage of KO node from the official KEGG
database.
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Figure 3.9.2.3 Enriched KEGG pathways of IncRNA target genes

3.9.2.4 Clustering of KEGG-enriched IncRNA Target Genes

Clustering based on the enriched KEGG pathway is essential for studying the differences
of IncRNA target gene expression among samples, where itis easy to find some important
differential expression in some pathways. The vertical clustering is useful to determine
correlation of samples based on gene expression levels, while the horizontal clustering is
useful for finding some classes that have similar function and expression. In this analysis,
the differences of gene expression from the top 30 significant KO terms are shown in the
result. If there are less than 30 significant KO terms, all of them are used.
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Figure 3.9.2.4 Clustering of KEGG enrichment
The union of all pathways are used for clustering, and the expression level of all genes in each pathway is calculated. Pathways
in red and green colors represent high and low expression of genes in the corresponding pathways, respectively, and the number

in parenthesis after the pathway indicates the number of corresponding IncRNA target genes.

3.10 IncRNA conservation analysis

3.10.1 Sequence conservation analysis

Sequence conservation of IncRNA is generally lower than that of mRNA, and the phyloP
(http://compgen.bscb.cornell.edu/phast/) is used to score the conservation of mRNA and
IncRNA. The cumulative distribution of conservation scores is shown below:

Cumulative Distribution Curve
P value < 0.00001, t-test

1.00

Cumulative frequency

Type
== Cading
== LncRNA

T
0.0 04 0.8
Conservation score

Figure 3.10.1 Cumulative distribution of conservation scores of IncRNA and mRNA

3.10.2 Site conservation analysis

Site conservation of IncRNA sequences exists among various species, and the
positions of IncRNA in different species can be visualized by the UCSC browser.The
site conservation of IncRNA is given below:
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Figure 3.10.2 Conservation of IncRNAs among species

3.11 Alternative splicing (AS) analysis

The ASprofile (Florea et al., 2013) is used to classify and quantify the AS events
predicted by cufflinks (Trapnell et al., 2010). The workflow of ASprofile are shown
below:
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Step 4

AS analysis workflow

The 12 classes alternative splicing events are described below:

(1) TSS: Alternative 5' first exon (transcription start site)

(2) TTS: Alternative 3' last exon (transcription terminal site)

(3) SKIP: Skipped exon (SKIP_ON,SKIP_OFF pair)

(4) XSKIP: Approximate SKIP (XSKIP_ON,XSKIP_OFF pair)

(5) MSKIP: Multi-exon SKIP (MSKIP_ON MSKIP_OFF pair)

(6) XMSKIP: Approximate MSKIP (XMSKIP_ON,XMSKIP_OFF pair)
(7) IR: Intron retention (IR_ON, IR_OFF pair)

(8) XIR: Approximate IR (XIR_ON, XIR_OFF pair)

(9) MIR: Multi-IR (MIR_ON, MIR_OFF pair)
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(10) XMIR: Approximate MIR (XMIR_ON, XMIR_OFF pair)
(11) AE: Alternative exon ends (5', 3', or both)
(12) XAE: Approximate AE

3.11.1 Classification and quantification of AS events
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Sample Control
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Figure 3.11.1 Classification and quantification of AS events

The vertical axis represents the abbreviations of the AS event, and horizontal axis represents the number of the AS event.

Different samples are distinguished by different sub-figures and colors.

3.11.2 Statistics of types and expression of AS events

Table 3.11.2 Types and expression of AS events

event_id event_type  gene_id chrom event_start event_end event_pattern strand fpkm ref_id

1000001 TSS 100127946 chrll 69830650 69830710 69830710 + 0 XM_001717040.2

1000002 TTS 100127946 chrll 69866516 69866574 69866516 + 0 XM_001717040.2

1000003 TSS 100129216 chrll 71589499 71589556 71589556 + 0 NM_001242853.1

1000004 TTS 100129216 chrll 71595453 71595607 71595453 + 0 NM_001242853.1
Note:

(1) event_id: AS event ID

(2) event_type: type of AS event (TSS, TTS, SKIP_{ON,OFF}, XSKIP_{ON,OFF}, MSKIP_{ON,OFF}, XMSKIP_{ON,OFF},
IR_{ON, OFF}, XIR_{ON,OFF}, AE, XAE)

(3) gene_id: gene ID from the cufflinks assembly

(4) chrom: chromosome 1D

(5) event_start: start position of AS event

(6) event_end: end position of AS event

(7) event_signature: characteristics of AS event (for TSS, TTS - inside boundary of alternative marginal exon; for *SKIP_ON,the

coordinates of the skipped exon(s); for *SKIP_OFF, the coordinates of the enclosing introns; for *IR_ON, the end coordinates of



the long, intron-containing exon; for *IR_OFF, the listing of coordinates of all the exons along the path containing the retained
intron; for *AE, the coordinates of the exon variant)

(8) strand: strand of gene

(9) fpkm: gene expression level of the AS event

(10) ref_id: gene ID in the reference sequence file

3.12 SNP and InDel analysis

Single Nucleotide Polymorphisms (SNP) is a type of genetic maker that refers to the single
nucleotide variation in the genome. There are plenty of SNPs with rich polymorphisms.
Theoretically, each SNP site has four types of variation, but in fact there are only two types,
namely transformation and transversion, the ratio of which is 1:2. SNPs occur most
frequently in the CG sequences, and more often C is converted to T, because C is often
methylated in CG, and it will change to T after spontaneously deamination. Normally SNP
refers to the single nucleotide variation where the frequency of variation is greater than 1%.
InDel (insertion and deletion) refers to the insertion and deletion of small fragments, which
is relative to the reference genome, and it may contain one or more bases.

The samtools and picard-tools are used to analyze the mapping results, such as sorting the
chromosome and removing duplicate reads,and SNP calling and InDel calling is done by
GATK?2 (A McKenna, 2010). The table shown below are results after filtering, where the
columns in the InDel result are the same as those in the SNP result.

Table 3.12.1 SNP results

#CHROM POS REF ALT GenelD Control Sample

chrl 14653 C T 10246 6,58 16,60

chrl 14677 G A 100302652 5145 63,49

chrl 14907 A G 10551 79 94

chrl 14930 A G 100528064 0,11 1,7
Note:

(1) #CHROM: Chromosome/Scaffold ID of SNPs.

(2) POS: Position of SNPs on corresponding chromosome/scaffold.

(3) REF: Reference genotype.

(4) ALT: SNP genotype (Alternative genotype).

(5) Gene_id: Gene ID from reference GTF file.

(6) other coloums: genotype of each sample at this site (the number represents the reads number supporting the site. In detail, the

number before and after comma represents the reads number supporting REF and ALT, respectively.)

3.13 mRNA expression analysis

3.13.1 Quantification of mRNA expression
The expression of mRNAs and IncRNAs is assessed by cuffdiff
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(http://cufflinks.cbcb.umd.edu/manual .html#cuffdiff), and the results are shown
below:

Table 3.13.1 FPKMs of mRNA from each sample

transcript_id ST 2 ST 3 SN_2 SN_3
ENST00000618881 0 0 0 0
ENST00000618882 0 1.1894 0 0
ENST00000618887 0 0 2775718 1.08655
ENST00000496116 1.83384 1.76824 1.36016 0.987781
ENST00000496117 1.25275 0 0 0

3.13.2 Differential expression of mRNAs

Statistically, differential expression analysis of IncRNAs and mRNAs has no bias on
molecular type. If the sample has biological replicates, the differential expression is
analyzed by cuffdiff, and edgeR is used otherwise.

Table 13.2 Results of differential expression analysis

Gene Id ST_2 SN_2 log2FoldChange pval p-adjusted
ENST00000618881 0 0 0 1 1
ENST00000618882 0 0 0 1 1
ENST00000618887 0 275718 -inf 0.0409747 0.502693
ENST00000496116 1.83384 1.36016 0431093 0.676565 0.99999
ENST00000496117 1.25275 0 inf 0.0637675 0.502693
ENST00000496114 0 0.167968 -inf 0.127744 1

Note:

(1) Gene Id: gene ID

(2) ST_2: mean of FPKMs in sample 1

(3) SN_2: mean of FPKMs in sample 2

(4) log2FoldChange: log2(Samplel/Sample2)
(5) pvalue(pval): p-value

(6) qvalue(p-adjusted): adjusted p-value. Lower qvalue indicates more significant differential expression

3.14 Functional enrichment of differential mRNAs
The differential genes generated by cuffdiff are used for mRNA enrichment analysis.

3.14.1 GO Enrichment of Differential mRNAs

3.14.1.1 GO enrichment of differential mRNAs
Table 3.14.1.1 GO enrichment of differential mRNAs

GO_accession Description Term_type Over_represented_pValue padj fg bg

GO:0005515 protein binding molecular_function 2A47E-27 1.04E-23 1083 3739

G0:0005488 binding molecular_function 3.17E-21 6.66E-18 2268 3739

GO:0016787 hydrolase molecular_function 8.85E-12 1.24E-08 673 3739
activity
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G0:0031012 extracellular cellular_component 7.14E-09 7.50E-06 80

matrix
G0:0006810 transport biological_process 4.63E-08 324E-05 543
G0:0051234 establishment biological_process 4.63E-08 324E-05 543
of localization

Note:

(1) GO_accession: the unique id in Gene Ontology database

(2) Description: function description in gene ontology

(3) Term_type: type of the GO term (one of cellular_component, biological process or molecular_function)
(4) Over_represented _pValue: statistical significance on enrichment

(5) padj: adjusted p-value. Normally, padj < 0.05 means the gene is enriched in that term

(6) fg: the number of differential genes related to the GO term

(7) bg: the number of differential genes that have GO annotation.

3.14.1.2 DAG of GO-enriched Differential mRNAs

R
e/j/,e,e\\ —a
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Figure 3.14.1.2 DAGs of GO enrichment

3739

3739
3739

Node represents GO term, and box represents the top 10 terms of GO enrichment. Deeper color indicates higher enrichment and

vice versa. The GO term and the padj value of enrichment are shown in each node.

3.14.1.3 Bar plot of GO-enriched Differential mRNAs
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Figure 3.14.1.3 Bar plot of GO enrichment
Node represents GO term, and box represents the top 10 terms of GO enrichment. Deeper color indicates higher enrichment and

vice versa. The GO term and the padj value of enrichment are shown in each node.

3.14.1.4 Clustering of GO-enriched Differential mRNAs
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Figure 3.14.1.4 Clustering of enriched GO terms
The union of all terms on level 3 are used for clustering, and the expression level of all genes in each term is calculated. Terms in

red and green colors represent high and low expression of genes in the corresponding terms, respectively, and the number in
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parenthesis after the term indicates the number of corresponding differential genes.
3.14.2 KEGG Enrichment of Differential mRNAs

3.14.2.1 Summary of KEGG Enrichment of Differential mRNAs

Table 3.14.2.1 KEGG enrichment of differential mRNAs

#Term Id fg bg P-Value padj

Focal adhesion hsa04510 92 207 0.003657421 0.77563385

Pathways in cancer hsa05200 134 327 0.005540242 0.77563385
Note:

(1) #Term: Description of the KEGG pathway

(2) Id: unique pathway ID in the KEGG database

(3) fg: number of differential genes in the pathway
(4) bg: number of genes in the pathway

(5) P-value: statistical significance of the enrichment

(6) padj: adjusted p-value. Normally, padj < 0.05 means the term is enriched

3.14.2.2 Scatter Plot of KEGG Enrichment of Differential mRNAs

Statistics of Pathway Enrichment
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Figure 3.14.2.2 Scatter plot of enriched KEGG pathways of differential mRNAs
Vertical coordinates represent pathway name, and horizontal coordinates represent Rich factor. The size and color of point

represent the number of differential genes in the pathway and the range of different Q value, respectively.

3.14.2.3 Enriched KEGG Pathway of Differential mRNAs
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3.14.2.4 Clustering of KEGG-enriched Differential mRNAs
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Figure 3.14.2.4 Clustering of KEGG enrichment
The union of all pathways are used for clustering, and the expression level of all genes in each pathway is calculated. Pathways
in red and green colors represent high and low expression of genes in the corresponding pathways, respectively, and the number

in parenthesis after the pathway indicates the number of corresponding differential genes.
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3.15 Network analysis of protein-protein interactions of differential

mRNAS

The STRING protein-protein interaction database (http://string-db.org/) is used to
construct the interaction network. If the organism exists in the database, the target
gene set (such as differentially expressed gene list), are retrieved directly for network
construction. Otherwise, the target gene set is blastx searched (Evalue set to 1e-10)
against the close species or model organisms in the string database, and the results are
used network construction.

The interaction network data file are provided and can be imported to the Cytoscape
for editing. Users can summarize and edit the graph according to the topological
attributes of some networks. For example, the size of node is in proportion to its
degree, that is, the more the edges connected to it, the larger the node and its degree,
indicating that these nodes may be the core nodes in the network. The color of node is
related to its clustering coefficient. The color gradients from green to red means the
corresponding clustering coefficient changes from low to high. The clustering
coefficient represents the connectivity of the node and its adjacent nodes, and a higher
clustering coefficient means the connectivity is better. According to the purpose and
need of the research, users can also customize the graph by adjusting the position and
color of the node and annotating the expression levels and so on. It should be noted
that the blastx alignment can not ensure good accuracy. This part of analysis, which
may assist the user to find some important transcripts, is supplied for reference
purpose only. The demonstration of interaction network generated by Cytoscape is
shown below:
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Figure 3.15 Demonstration of interaction network generated by Cytoscape

3.16 Comparison of expression levels of IncRNAs and mRNAs

3.16.1 Comparison of expression levels of IncRNAs and mRNAs
The mean of expression levels of IncRNAs and mRNAs are used

log10-transformed (log,,(FPKM+1)) for use in the violin plot.

FPKM distribution

log1 O(FPKM+1)
n

.y
1

IncRNA mRNA
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Figure 3.16.1 Violin plot of expression levels of IncRNAs and mRNAs
Horizontal axis represents the molecular type, and vertical axis represents log,o(FPKM+1). The width of violin indicates the

number of transcripts under current expression level.

3.16.2 Expression analysis of differential IncRNAs and mRNAs

The expression of differential transcripts or genes is visualized by volcano plot. For
samples with replicates, the threshold is qvalue < 0.05, otherwise the threshold is
qvalue < 0.05 and llog,FoldChangel > 1.

ST 2 vs_SN_2

- up regulated: 6654
down regulated: 4171

—logso(pvalue)

0
logx(fold change)

Figure 3.16.2 Volcano plot of differential transcripts
The differential expression with statistical significance are represented by red (up-regulated mRNAs), green (down-regulated
mRNAs), yellow (up-regulated IncRNAs) and brown (down-regulated IncRNAs) points, respectively. Horizontal axis represents
the fold change of transcripts in different samples, and vertical axis represents the statistical significance of differential

expression.

3.16.3 Distribution of IncRNAs and mRNAs in chromosomes

Genes are usually regularly distributed in chromosomes, and those that have similar
functions may cluster in the same chromosome. Meanwhile, The adjacent genes
usually have similar functions, or involved in the same cell type or metabolic pathway,
and they are more possibly regulated by each other, compared to genes in long
distance. Therefore, for differential expression studies, the distribution of genes and
adjacent genes in the chromosome may be important, which is the key for selection of
differential genes. In addition, higher density of differential genes within a region on
the chromosome can help us to find interested genes.
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Figure 3.16.3 Distribution of differential genes on chromosomes

The differential genes are screened based on FPKM values from different samples (The threshold is qvalue < 0.05).

3.16.4 Clustering of differential IncRNAs and mRNAs

The clustering analysis is used to assess the expression of transcripts under different
experimental conditions. The functions of novel transcripts or the unknown functions
of known transcripts can be identified by clustering of genes with the same or similar
expression, since these transcripts may have similar functions, or involved in the same
metabolic pathway or cellular component. The FPKMs of transcripts are used for
hierarchical clustering, where different color indicates different grouping. The ones
within the same group have similar expression, which may have similar function or
involved in the same biological process.
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Figure 3.16.4 Clustering of differentially expressed transcripts
Hierarchical clustering based on FPKMs, where logl 0(FPKM+1) is used for clustering. Red color represents genes with higher

expression, while blue color represents genes with lower expression.

3.16.5 Venn diagram of differential expression

When there are 2-5 samples, the comparison of each group can be visualized as venn
diagram, which is intuitive to explore unique and common transcripts from each
sample.

ST_2_vs_ST_3 SN_2_vs_SN_3

4719 2071 3113

Figure 16.5 Venn diagram of differentialy expressed genes
The sum of the number in each big circle represents the total number of differential transcripts in the comparison, and the number

in the overlap region represents the number of shared transcripts.
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3.17 Comparison of structures of IncRNAs and mRNAs

To study the difference of the IncRNAs and mRNAs molecules and whether the
predicted IncRNAs consist with the annotated IncRNAs, the structures of IncRNAs
and mRNAs are compared based on the length of the transcript and the number of
exons and ORFs.

3.17.1 Length comparison of IncRNAs and mRNAs
The result of length comparison is shown below:
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Figure 17.1 Length comparison of IncRNAs and mRNAs
The figures in the top and bottom are the length distribution of IncRNAs and mRNAs, respectively. Horizontal axis represents the

length of transcripts, and vertical axis represents the number of transcripts for each length.

3.17.2 Comparison of exon numbers of IncRNAs and mRNAs
The result of the comparison is shown below:
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IncRNA vs mRNA(exon number)
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Figure 3.17.2 Comparison of exon numbers of IncRNAs and mRNAs
The figures in the top and bottom are the distribution of exon numbers of IncRNAs and mRNAs, respectively. Horizontal axis

represents the number of exons, and vertical axis represents the number of transcripts for each exon number.

3.17.3 Comparison of ORF length of IncRNAs and mRNAs
The ORFs of known genes are retrieved based on the gene annotations, and the ORFs
of IncRNAs are predicted by estscan and translated to protein sequences. The length
distribution of ORFs is shown below:

IncRNA vs mRNA(Orf length)
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Figure 3.17.3 Comparison of ORF length of IncRNAs and mRNAs
The figures in the top and bottom are the distribution of ORF length of IncRNAs and mRNAs, respectively. Horizontal axis

represents the length of ORFs, and vertical axis represents the number of transcripts for each ORF length.



3.18 LncRNA-mRNA interaction network

LncRNAs and mRNAs can be associated by the targeting relation, and mRNAs can be
associated by protein-protein interactions, then the IncRNA-mRNA-protein
interaction network can be created. The differential IncRNAs and the targeted cis- or
trans-acting mRNAs are associated, and mRNAs are associated by using the STRING
database (http://string-db.org/) (See the section "Network analysis of protein-protein
interactions of differential mRNAs" above for details).

The data files of IncRNA-mRNA and mRNA-mRNA interaction networks are
provided and can be imported to the Cytoscape for editing. Users can summarize and
edit the graph according to the topological attributes of some networks. According to
the purpose and need of the research, users can also customize the graph by adjusting
the position and color of the node and annotating the expression levels and so on. It
should be noted that the blastx alignment can not ensure good accuracy. This part of
analysis, which may assist the user to find some important genes, is supplied for

reference purpose only. The demonstration of interaction network generated by
Cytoscape is shown below:

Figure 3.18 Demonstration of interaction network generated by Cytoscape
LncRNAs and target genes are shown in circle and triangle, respectively. The solid line in red color represents the interaction of
IncRNAs and cis-acting targets, the dashed line in green color represents the interaction of IncRNAs and trans-acting targets, and
the solid line in purple color represents the mRNA-mRNA interaction. When there are not trans-acting targets, the dashed line in

green color is not available accordingly.
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